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ABSTRACT 
 

Support Vector Machine (SVM) based image compression technique which utilizes the neighborhood correlation of 

wavelet coefficients is suggested by Jiao et. al.  But the neighborhood correlation does not take care of the 

relationship between inter scale coefficients.  Hence, in this paper, regression which utilizes the hierarchical 

correlation of wavelet coefficients is proposed to improve the compression.  Experiments show that the proposed 

method performs reasonably well compared to the method proposed by Jiao et. al. 
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I. INTRODUCTION 

 
Image compression techniques are used to reduce the 

size of images without much degrading their quality for 

efficient storage and transmission.  Transform based 

image compression techniques have been widely used 

in state-of-art image compression [1, 2], where the 

image is represented by a set of coefficients which are 

then coded using various entropy coding techniques [3, 

4].  In the last decade wavelets have been widely used 

in image compression [5, 6, 7].   The reason for the 

wide use of wavelets in image coding is due to their 

ability to efficiently approximate smooth functions 

with point singularities [8]. 

 

In the past few years, image coding schemes based on 

Support Vector Machines (SVM) [9] for Regression 

have been proposed.  In [10], the authors have 

proposed a novel algorithm which uses SVM learning 

to approximate Discrete Cosine Transform (DCT) 

coefficients.  This method achieves better compression 

results compared to Joint Photographic Experts Group 

(JPEG).  However, the reconstructed image has 

blocking artifact, especially for higher compression 

ratios.  The wavelet transform has some advantages 

over DCT such as superior compression, 

multiresolution and minimal blocking artifacts.  Hence, 

in [11] the authors have proposed a method to quantize 

and approximate wavelet coefficients using SVM.  This 

method achieves better compression ratios than the 

method proposed in [10].  As wavelet functions are 

isotropic, they do not efficiently represent the 

smoothness along edges in images.  Ridgelet and 

curvelet transforms [12] are anisotropic and efficiently 

represent discontinuities along curves.  These features 

of curvelets are utilized in [13].  In [13] the authors 

propose a novel scheme for image compression using 

second generation curvelet transform and SVM 

regression.  These image coding techniques work based 

on the ability of support vector regression (SVR) to 

approximate functions using a small number of 

parameters such as signal samples or support vectors 

[14]. Authors in [11], proposed an image compression 

technique to approximate the wavelet coefficients by 

SVM and then encode the support vectors and their 

weights using runlength and arithmetic coding.  They 

use three different scan orders for three different 

orientations to map the coefficient subblock to one 

dimension vector.  These scan orders exploit the 

neighborhood correlation of wavelet coefficients in a 

subband.  In [11], the authors have utilized the 

neighborhood correlation of wavelet coefficients to 

train the SVM. 

 

In this paper a method which utilizes the parent-child 

correlation of wavelet coefficients to train the SVM is 

proposed, which is a slight modification to the method 
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proposed in [11].  The presented work is an 

improvement over the work presented in [11] in terms 

of compression ratio and peak-signal-to-noise ratio 

(PSNR). 

 

The remainder of this paper is organized as follows:  

As the proposed method is based on SVM regression 

and Discrete Wavelet Transform (DWT), section II 

gives an overview of SVM regression and DWT.  

Section III describes the proposed method to compress 

images using hierarchical correlation of wavelet 

coefficients in SVM regression.  Section IV presents 

the results of proposed method which are compared 

with the results given in [11].  Section V gives the 

concluding remarks. 

 

II.  BACKGROUND 

 

A. SVM Regression 

 

SVM, a new machine learning method, was developed 

by Vapnik [9].  Since then, SVMs are widely used for 

learning from experimental data and for solving various 

classification, regression and density estimation 

problems [10].  Regression [15], which is based on 

function approximation, is a non-separable 

classification where each data can be considered as its 

own class [16]. 

 

In SVM regression, given a set of training points, the 

real function is approximated within a predefined error 

ε by choosing the minimum number of training points.  

The selected training points are called support vectors.  

The number of support vectors is usually less compared 

to that of the number of training points.  This feature is 

utilized in compression.  Increase in the value of ε 

reduces the requirement for the accuracy in 

approximation and thus decreases the number of 

support vectors.  SVM regression approximates 

functions of the following form: 

 (   )  ∑     ( )
 
                                               (1) 

The training points are given by  

(     ) (     )    (     ) where     
  and     .    

represents the number of support vectors and    are the 

weights to be found and   ( ) are the kernel functions.  

Vapnik’s linear loss function  -insensitivity zone is 

used as a measure of the error of approximation 

|   (   )|  {
                        |   (   )|   

|   (   )                
             (2)  

Thus, the loss is equal to zero, if the difference between 

the predicted  (   )  and the measured value is less 

than  .  Vapnik’s  -insensitivity function (2) defines an 

  tube.  A greater   means a reduction in the 

requirements on the accuracy of approximation.  This 

decreases the number of support vectors leading to 

compression. 

 

A. Discrete Wavelet Transform 

 

Multiresolution [17] provides tools to describe 

mathematical objects like images at different levels of 

resolutions.  Let the function  ( ) represent the scaling 

function.  A scaling function at a certain scale can be 

expressed in terms of translated scaling functions at the 

next higher scale [18], which can be expressed by the 

following multi-resolution formulation: 

                                        

(3) 

 

In equation (3)   and   are scaling and translation 

parameters and  ,      .  According to the multi-

resolution analysis for every scaling function there is a 

corresponding wavelet function which can be expressed 

in terms of scaling functions at the next higher scale.  

Hence the wavelet at level j can be written using: 

                                

(4) 

 

A signal  ( ) can be expressed in terms of scaling and 

wavelet functions as: 

 ( )  ∑     ( )  (       )  ∑     ( )  (       )(5) 

If the scaling function     ( ) and the wavelets     ( ) 

are orthonormal, then the coefficients     ( ) and      

can be found by taking the inner products as given 

below: 

    ( )  〈 ( )     ( )〉 

    ( )  〈 ( )     ( )〉                                                    (6) 

If     ( ) and     ( ) in the inner products are replaced 

by suitably scaled and translated versions of (3) and (4), 

the following equations can be derived [18]: 

    ( )  ∑  (    )  ( )                        (7) 

    ( )  ∑  (    )  ( )                        (8) 

In equation (7) the coefficients  ( )  are the scaling 

filter or the low pass filter and in equation (8) the 

coefficients  ( ) are the wavelet filter or the high pass 

filter.  Hence, the coefficients     ( ), represent the 

approximation coefficients and the coefficients     , 

represent the detail coefficients. 
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In image processing, 2-D decomposition of images can 

be easily extended from the 1-D decomposition if the 

wavelet transform is separable.  When an     is 

decomposed using one-scale wavelet transform, four 

finer scale subbands, labeled as             and     

are obtained.  The lowest frequency subband     can 

be continuously decomposed to obtain four coarser 

scale subbands, viz.,      ,      ,       and      .  

This method of decomposition is also called as the tree-

decomposition mode.  Figure 1 shows the result of a 3-

scale wavelet transform based on a tree decomposition 

mode. 

 

 

III. COMPRESSION BY UTILIZING 

HIERARCHICAL CORRELATION OF WAVELET 

COEFFICIENTS IN SVM REGRESSION 

 

Wavelet transform has space and frequency 

characteristics.  The ability of wavelet coefficients to 

capture singularities in a signal with a few coefficients 

has enabled wavelets to be used for denoising, 

compression, estimation and other applications.  The 

wavelet transform decorrelates the signal, but the 

coefficients still have significant interscale and 

intrascale dependencies.  If the redundancy among 

wavelet coefficients is removed, further compression 

can be achieved.  The approach presented in this paper 

follows the approach presented in [11], where SVM 

regression is used to remove the redundancies present 

in the wavelet coefficients and to achieve further 

compression.  The method presented here is a slight 

modification of the work presented in [11].  In [11], the 

neighborhood correlation among wavelet coefficients 

in every scale and every orientation is utilized to make 

the SVM learn data dependency among those 

coefficients.  In the proposed method, the correlation 

among wavelet coefficients in the same orientation, but 

in different scales is utilized to train the SVM 

regression.  

 

 
Figure 1: 3- level wavelet decomposition 

 

In a wavelet decomposition of an image, the number of 

child coefficients for each parent coefficient, at a given 

orientation, is four.  The hierarchical correlation 

between subband coefficients can be characterized by a 

quadtree structure as shown in figure 2.  The parent 

coefficient and the children coefficients are correlated.  

Generally, the linear correlation between the squares or 

magnitudes of a parent and child wavelet coefficients 

are high [19].   

 

An image compression technique based on wavelet 

transform and SVM regression to approximate the 

coefficients is proposed in [11].  According to the 

method proposed in [11], the signs and magnitudes of 

coefficients are encoded separately.  As only the 

magnitude of the wavelet coefficients are used by SVM 

to approximate the coefficients, the parent-child 

correlation or hierarchical correlation is utilized in this 

work to improve the compression performance.  In 

SVM regression, the wavelet coefficients are arranged 

in such a manner that they are related with each other 

and this enables the SVM to learn the data dependency 

more efficiently.  Hence, the inputs to the SVM 

regression model are the positions of the wavelet 

coefficients and the outputs are the values of the 

coefficients.  And after training, SVM model 

parameters are encoded by arithmetic coders.  The 

more efficiently the data dependency is learned, the 

lesser number of support vectors are selected by SVM 

and hence better compression performance is achieved. 
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Figure 2:  Hierarchical dependences in the tree-based 

organization of wavelet transform 

 

The procedure for image compression proposed in this 

work is similar to the method proposed in [11] except 

that the scan order of wavelet coefficients to train the 

SVM utilizes the hierarchical correlation rather than 

utilizing the neighborhood correlation.  Image is first 

decomposed using a 4 level wavelet transform.  The 

wavelet coefficients are quantized using scalar 

quantization with a deadzone.    coefficients are 

encoded using DPCM.  The signs of wavelet 

coefficients are encoded separately.  The wavelet 

coefficients at every scale and orientation are 

normalized.  For every orientation and for every 

coefficient at the coarsest scale the hierarchical tree 

with this coefficient at root and its children coefficients 

as child nodes is considered.  In order to generate the 

one-dimensional vector, the tree is scanned in a breadth 

first traversal order.  First the root coefficient is 

considered, and then its children coefficients at the next 

scale are considered and so on till the finest level.  A 4 

level wavelet transform on image is taken.  Hence for 

one coefficient in a given orientation at the coarsest 

scale there will be 85 nodes in the tree organization.  

The coefficients in the tree with the root as a single 

coefficient at the coarsest scale in one given orientation 

are mapped to a 85-dimension vector (Y).  The pictorial 

representation of the scan order for a given coefficient 

at the coarsest level is depicted in figure 3.  The 

coefficient 1 forms the root of the tree with four 

descendants 2, 3, 4 and 5 in the next finer scale.  The 

position of the elements in Y form the vector X, which 

is also a 85-dimension vector.  In the SVM regression 

X forms the input data and Y forms the output data.  

This arrangement of the wavelet coefficients and their 

positions are used to train the SVM.  The weights and 

support vectors obtained are combined together.  The 

weights are quantized, and then the weights and 

support vectors are encoded using run length and 

arithmetic coding.  This process is repeated for every 

wavelet coefficient in every orientation at the coarsest 

scale, i.e. at level 4. 

 
Figure 3:  Scan order based on hierarchical dependencies of 

wavelet coefficients 

 

IV. EXPERIMENTAL RESULTS 
 

The proposed method is evaluated on three benchmark 

512x512 grayscale images.  The results are compared 

with the results of wavelet and SVM based image 

compression proposed in [11] which utilizes the 

neighborhood correlation.  An objective measure of 

reconstructed image quality, PSNR in decibels [20] is 

used for comparison purposes and is defined as  

            
    

   
                                      (9) 

where 

    
∑ ∑ (       ̂)

  
   

 
   

   
                                (10) 

where     and    ̂  are the original and reconstructed 

pixels repectively and the size of the image is    . 

 

The proposed method is implemented in MATLAB 

using LibSVM for SVM regression.  Daubechies 9/7 

wavelet is chosen in the implementation.  Gaussian 

function is chosen as the regression kernel. 

 

Table 1 compares the results of the proposed method 

and the method proposed in [11] in terms of PSNR for 

different compression ratio.  It can be observed from 

the results that the proposed method outperforms the 

method proposed in [11] with an improvement of 0.1 

dB – 1.0 dB. 

TABLE I 

RESULTS OF COMPRESSION USING PROPOSED METHOD IN 

TERMS OF COMPRESSION RATIO AND PSNR 

Image Compression 

Ratio 

PSNR 

Method in 

[11] 

Proposed 

Method 

Lena 18 27.01 27.39 

 20 26.71 26.86 

 22 26.16 26.35 

Barbara 18 27.38 27.40 

 20 26.74 27.02 

 25 26.04 26.87 

Mandrill 16 20.80 21.11 

 20 19.64 20.70 

 32 18.96 19.77 
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V. CONCLUSION 

 
The arrangement of the wavelet coefficients based on 

hierarchical correlation is utilized to improve the SVM 

based image compression method.  This arrangement 

of wavelet coefficients makes SVM learn data 

dependency more efficiently by utilizing the intra-band 

and inter-scale dependencies.  Experimental results 

show that the proposed method outperforms the method 

proposed by Jiao et. al. 
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