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ABSTRACT 
 

Primary-ambient extraction (PAE) has been playing an important role in spatial audio analysis-synthesis. Based on 

the spatial features, PAE decomposes a signal into primary and ambient components, which are then rendered 

separately. PAE is performed in sub band domain for complex input signals having multiple point-like sound 

sources. However, the performance of PAE approaches and their key influences for such signals have not been well-

studied so far. In this paper, we conducted a study on frequency-domain PAE using principal component analysis 

(PCA) and independent component analysis (ICA) in the case of multiple sources. We found that the partitioning of 

the frequency bins is very critical in PAE. Simulation results reveal that the proposed top-down adaptive partitioning 

method achieves superior performance as compared to the conventional partitioning methods. 

Keywords:Primary Ambient Extraction (PAE), Ambient Phase, Spatial Audio, Sparsity, Principal Component 

analysis (PCA), Independent Component Analysis (ICA), Frequency Domain.  

 

I. INTRODUCTION 

 

Spatial audio reproduction of digital media content 

(e.g., movies, games, etc.) has gained popularity in 

recent years. Reproduction of sound scenes essentially 

involves the reproduction of point-like directional 

sound sources and the diffuse sound environment, 

which are often referred to as primary and ambient 

components, respectively [1], [2]. Due to the perceptual 

differences between the primary and ambient 

components, different rendering schemes should be 

applied to the primary and ambient components for 

optimal spatial audio reproduction [2]. However, 

existing mainstream channel-based audio formats (such 

as stereo and multichannel signals) provide only the 

mixed signals, which necessitate the extraction of the 

primary and ambient components from the mixed 

signals. This extraction Process is usually known as 

primary-ambient extraction (PAE). To date, PAE has 

been applied in spatial audio processing spatial audio 

coding], audio re-mixing [1] and hybrid loudspeaker 

systems as well as natural sound rendering headphone 

systems. 

 

Numerous PAE approaches are applied to stereo and 

multichannel signals. For the basic signal model for 

stereo signals, the primary and ambient components are 

mainly discriminated by their inter-channel cross-

correlations, i.e., the primary and ambient components 

are considered to be correlated and uncorrelated, 

respectively [2]. Based on this model, several time-

frequency masking approaches were introduced, where 

the time frequency masks are obtained as a nonlinear 

function of the inter-channel coherence of the input 

signal [1] or derived based on the criterion of equal 

level of ambient components between the two channels 

[3]. Further investigation of the differences between 

two channels of the stereo signals has led to several 

types of linear estimation based approaches [4] 

including principal component analysis (PCA) and ICA 

based approaches [2] and least-squares based 

approaches. These linear estimation based approaches 

extract the primary and ambient components using 

different performance-related criteria [4]. To deal with 

digital media signals that cannot fit into the basic signal 

model, there are other PAE approaches that consider 

signal model classification, time/phase differences in 

primary components non-negative matrix factorization 

independent component analysis etc. 

The above-mentioned PAE approaches often suffer 

from severe extraction error that takes the form of 

residual uncorrelated ambient component in the 
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extracted primary and ambient components, especially 

for digital media content having relatively strong 

ambient power [4]. In this Letter, we aim to improve 

the performance of PAE by exploiting the 

characteristics of uncorrelated ambient components of 

digital media content and the sparsity of the primary 

components [5]. These considerations have led to the 

novel approach to solve the PAE problem using 

ambient phase estimation with a sparsity constraint 

(APES). 

II. EXISTING METHOD 
 

The primary and ambient components are usually 

mixed in conventional channel-based audio formats, 

such as stereo and surround sound formats. Such 

channel-based audio formats make primary-ambient 

extraction (PAE) an essential step in spatial audio 

reproduction. In recent years, PAE has been 

incorporated into a wide range of applications, 

including spatial audio processing spatial audio coding 

audio mixing and emerging loudspeaker and 

headphone reproduction systems .There are two 

emerging frameworks for spatial audio coding: spatial 

audio scene coding (SASC) and directional audio 

coding (Dirac). Both SASC and Dirac extract the 

primary and ambient components and then synthesize 

the output based on the playback system configuration. 

In SASC, the localization analysis and synthesis, based 

on Gerzon localization vector, are independently 

performed on the primary and ambient components. In 

DirAC, the primary components are reproduced using 

vector base amplitude panning, while the ambient 

components are decorrelated and channeled to all 

loudspeakers to create the surrounding sound 

environment. Incorporating PAE into various up-

mixing techniques has been discussed.  The PAE based 

up-mixing is particularly suitable for a hybrid 

loudspeaker system proposed. This hybrid loudspeaker 

system uniquely combines parametric and conventional 

loudspeakers, taking advantage of the high directivity 

of the parametric loudspeakers to render accurate 

localization of the primary components and reproduce 

spaciousness of the ambient components using the 

conventional loudspeakers. Furthermore, PAE based 

spatial audio reproduction for headphone playback has 

been shown to create a more natural and immersive 

listening experience than conventional headphone 

rendering systems. 

To date, many approaches have been proposed for PAE. 

For these PAE approaches, the stereo input signal is 

generally modeled as a directional primary sound 

source linearly mixed with the ambient component.  

 

The assumptions of the stereo signal model are as 

follows. First, the primary and ambient components are 

considered to be independent with each other. Second, 

the primary components in the two channels are 

assumed to be correlated at zero lag. Third, the ambient 

components in the two channels are uncorrelated. 

Assuming that the ambient components in two channels 

of the stereo signal have equal level, used a time-

frequency mask to extract the ambient components 

from the stereo signal. Their time-frequency mask 

approach can also be extended to multichannel input 

signals. A least-squares approach, proposed by Faller 

[9], estimated the primary and ambient components by 

minimizing the mean-square error. Control of spatial 

cues of the ambient components was also combined 

with least-squares. Recently, He et al. proposed a new 

ambient spectrum estimation framework and derived a 

sparsity constrained solution for PAE. Principal 

component analysis (PCA) based approaches remain 

the most widely studied approaches for PAE.  

 

Considering the independence between the primary and 

ambient components, the stereo signal is decomposed 

into two orthogonal components in each channel using 

the Karhunen-Loève transform. Assuming that the 

primary component is relatively stronger in power than 

the ambient component, the component having larger 

variance is considered to be the primary component and 

the remaining component is considered as the ambient 

component. A comprehensive evaluation and 

comparison on these PAE approaches can be found. 

Other techniques such as non-negative matrix 

factorization and independent component analysis are 

also applied in PAE. 

 

III. PROPOSED MITIGATION SCHEME 

 

A. Frequency bin partitioning 

To effectively handle multiple sources in the primary 

components, frequency bins of the input signal are 

grouped into several partitions, as shown in Fig.1. In 

each partition, there is only one dominant source and 

hence one corresponding value of k and   is computed. 

Ideally, the number of partitions should be the same as 

the number of sources, and the frequency bins should 
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be grouped in a way such that the magnitude of one 

source in each partition is significantly higher than the 

magnitude of other sources. However, the number and 

spectra of the sources in any given input signals are 

usually unknown. Hence, the ideal partitioning is 

difficult or impossible to achieve. 

 
Figure 1. Block diagram of frequency bin partitioning 

based PAE in frequency domain 

 

Alternatively, we consider two types of feasible 

partitioning methods, namely, fixed partitioning and 

adaptive partitioning. Regardless of the input signal, 

the fixed partitioning classifies the frequency bins into 

a certain number of partitions uniformly or non-

uniformly, such as equivalent rectangular bandwidth 

(ERB) [13], [14]. By contrast, adaptive partitioning 

takes into account of the input signal via the top-down 

(TD) or bottom-up (BU) method. BU method starts 

with every bin as one partition and then gradually 

reduces the number of partitions by combining the bins. 

Conversely, TD starts from one partition containing all 

frequency bins and iteratively divides each partition 

into two sub-partitions, according to certain conditions. 

As the number of partitions is usually limited, TD is 

more efficient than BU, and hence preferred. 
 

To determine whether one partition requires further 

division, ICC-based criteria are proposed in TD 

partitioning. First, if the ICC of the current partition is 

already high enough, we consider only one source is 

dominant in the current partition and cease further 

division of the partition. Otherwise, the ICCs of the two 

divided sub-partitions are examined. The partitioning is 

continued only when at least one of two ICCs of the 

sub-partitions becomes higher, and neither ICC of the 

sub-partitions becomes too small, which indicates that 

no source is dominant. Suppose the ICCs of the current 

partition, and two uniformly divided sub-partitions are 

ϕ0, ϕ1, ϕ2, as shown in Figure 2.  

                        
Figure 2. An illustration of top-down partitioning 

 

For generality, a higher threshold of ICC ϕH and a 

lower threshold ϕL are introduced. Thus, the following 

three criteria for the continuation of partitioning in TD: 

a) ϕ0 < ϕH, and 

b) Max(ϕ1, ϕ2) > ϕ0, and 

c) Min(ϕ1, ϕ2) > ϕL. 

The partitioning is stopped when any of the three 

criteria is unsatisfied. Frequency bin partitioning is 

unnecessary for one source, but this partitioning plays 

an essential role for multiple sources, especially when 

the spectra of the sources overlap. 

 

B. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a technique of 

multivariable and mega variate analysis which may 

provide arguments for reducing a complex data set to a 

lower dimension and reveal some hidden and 

simplified structure/patterns that often under lie it [11]. 

The main goal of Principal Component Analysis is to 

obtain the most important characteristics from data. In 

order to develop a PCA model, it is necessary to 

arrange the collected data in a matrix X. This m×n 

matrix contains information from n sensors and m 

experimental trials [11]. Since physical variables and 

sensors have different magnitudes and scales, each 

data-point is scaled using the mean of all measurements 

of the sensor at the same time and the standard 

deviation of all measurements of the sensor. Once the 

variables are normalized, the covariance matrix Cx is 

calculated. It is a square symmetric m×m matrix that 

measures the degree of linear relationship within the 

data set between all possible pairs of variables 

(sensors).The subspaces in PCA are defined by the 

eigenvectors and eigenvalues of the covariance matrix 

as follows: 

Cx ̃=  ̃˄ 

Where the eigenvectors of Cx are the columns of  ̃ ,and 

the eigenvalues are the diagonal terms of Λ (the off-

diagonal terms are zero). Columns of matrix  ̃ are 

sortedaccording to the eigenvalues by descending order 
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and they are called as (by some authors) Principal 

Components of the data set or loading vectors. The 

eigen vectors with the highest eigenvalue represents the 

most important pattern in the data with the largest 

quantity of information. Choosing only a reduced 

number r < n of principal components, those 

corresponding to the first eigenvalues, the reduced 

transformation matrix could be imagined as a model for 

the structure. In this way, the new matrix P ( ̃sorted 

and reduced) can be called as PCA model. 

Geometrically, the transformeddata matrix T (score 

matrix) represents the projection of the original data 

over the direction of the principal components P: 

T = XP 

In the full dimension case (using  ̃), this projection is 

invertible (since  ̃ ̃T 
= I )and the original data can be 

recovered as X = T ̃T
. In the reduced case (using P), 

with the given T, it is not possible to fully recover X, 

but T can be projected back onto the original m-

dimensional space and obtain another data matrix as 

follows: 

 ̂=TP
T 

= (XP)P
T
 

Therefore, the residual data matrix (the error for not 

using all the principal components) can be defined as 

the difference between the original data and the 

projected back. 

E    = X- ̂ 

                = X – XPP
T
 

                 = X(I – PP
T
) 

PCA is also known as the Karhunen-Loeveor Hoteling 

transform [11]. PCA can also be applied in feature 

extraction, in order to reduce the correlation between 

the elements of the feature vector. It is also proposed as 

a pre-processing tool to enhance the performance of 

Gaussian Mixture Models (GMM). 

 

C. Independent Component Analysis(ICA) 

Independent component analysis (ICA) is a statistical 

and computational technique for revealing hidden 

factors that underlie sets of random variables, 

measurements, or signals. ICA defines a generative 

model for the observed multivariate data, which is 

typically given as a large database of samples. In the 

model, the data variables are assumed to be linear or 

nonlinear mixtures of some unknown latent variables, 

and the mixing system is also unknown. The latent 

variables are assumed nongaussian and mutually 

independent, and they are called the independent 

components of the observed data. These independent 

components, also called sources or factors, can be 

found by ICA [12]. 

 

ICA can be seen as an extension to principal 

component analysis and factor analysis. ICA is a much 

more powerful technique, however, capable of finding 

the underlying factors or sources when these classic 

methods fail completely. The data analyzed by ICA 

could originate from many different kinds of 

application fields, including digital images and 

document databases, as well as economic indicators 

and psychometric measurements. In many cases, the 

measurements are given as a set of parallel signals or 

time series; the term blind source separation is used to 

characterize this problem. Typical examples are 

mixtures of simultaneous speech signals that have been 

picked up by several microphones, brain waves 

recorded by multiple sensors, interfering radio signals 

arriving at a mobile phone, or parallel time series 

obtained from some industrial process. 

 

The general idea is to change the space from an m-

dimensional to an n-dimensional space such that the 

new space with the transformed variables (components) 

describes the essential structure of the data containing 

the more relevant information from the sensors. Among 

its virtues is that ICA has a good performance in 

pattern recognition, noise reduction and data reduction. 

The goal of ICA is to find new components (new space) 

that are mutually independent in complete statistical 

sense. Once the data are projected into this new space, 

these new variables have no any physical sense and 

cannot be directly observed, for that, these new 

variables are known as latent variables. If r random 

variables are observed (x1,x2, ……,xr), they can be 

modeled as linear combinations of n random variables 

(s1,s2, …….,sn) as follows: 

xi= ti1 s1 + ti2 s2+….+ tin sn 

Each tij  in  is an unknown real coefficient. By 

definition, the set of sj should be Statistically mutually 

independent and can be designed as the Independent 

Components (ICs). In matrix terms, this equation can 

be written as 

x=Ts 

where x= (x1,x2, ……,xr)
T
, s= (s1, s2,…, sn)

T
 and T is 

the r × n mixing matrix that contains all tij. If each 

random variable xi consists of time-histories with m 
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data points(m-dimensional), the ICA model still holds 

the same mixing matrix and it can be expressed as: 

X = TS 

where X is the r × m matrix that contains the 

observations. Each row of X  represents the time 

histories. S is the Independent Component matrix, 

where each column is the vector of latent variables of 

each original variable. Since T and S are unknown, it is 

necessary to find these two elements considering that 

only the X matrix is known. The ICA algorithm finds 

the independent components by minimizing or 

maximizing some measure of independence [12]. To 

perform ICA, the first step includes the application of 

pre-whitening to the input data X. The main idea is to 

use a linear transformation to produce a new data 

matrix Z=VX whose elements are mutually 

uncorrelated and their variances equal unity. It means 

that the covariance matrix of Z is the identity 

matrix(E{ZZ
T
}=I). A popular method to obtain the 

whitening matrix V is by means of Singular Value 

Decomposition (SVD), such as the one used in 

Principal Component Analysis (PCA) and it is given by: 

V = Λ
-1

P
T
, 

where the eigenvectors of the covariance matrix 

ZZ
T
are the columns of P and the eigen values are the 

diagonal terms of Λ(the off-diagonal terms are zero). 

The second step is to define a separating matrix W that 

transforms the matrix Z to the matrix S whose variables 

are non-Gaussian and statistically independent: 

S = W
T
Z 

There are several approaches to reach this goal. 

Maximizing the non-gaussianity of W
T
Z give us the 

independent components. On the other hand, 

minimizing the mutual information between the 

columns of W
T
Z is to minimize the dependence 

between them. The non-gaussianity can be measured by 

different methods, kurtosis and Negentropy being the 

most commonly used. The first one is sensitive to 

outliers and the other is based on the information 

theory quantity of entropy.  

 

Independent component analysis (ICA) is a statistical 

and computational technique for revealing hidden 

factors that underlie sets of random variables, 

measurements, or signals. ICA defines a generative 

model for the observed multivariate data, which is 

typically given as a large database of samples. In the 

model, the data variables are assumed to be linear or 

nonlinear mixtures of some unknown latent variables, 

and the mixing system is also unknown. The latent 

variables are assumed nongaussian and mutually 

independent, and they are called the independent 

components of the observed data. These independent 

components, also called sources or factors, can be 

found by ICA [12].  

 

ICA can be seen as an extension to principal 

component analysis and factor analysis. ICA is a much 

more powerful technique, however, capable of finding 

the underlying factors or sources when these classic 

methods fail completely. The data analyzed by ICA 

could originate from many different kinds of 

application fields, including digital images and 

document databases, as well as economic indicators 

and psychometric measurements. In many cases, the 

measurements are given as a set of parallel signals or 

time series; the term blind source separation is used to 

characterize this problem. Typical examples are 

mixtures of simultaneous speech signals that have been 

picked up by several microphones, brain waves 

recorded by multiple sensors, interfering radio signals 

arriving at a mobile phone, or parallel time series 

obtained from some industrial process. 

 

D. Sparse Representations of an Audio Signal:  

Sparse representations have proved a powerful tool in 

the analysis and processing of audio signals and 

already lie at the heart of popular coding standards such 

as MP3 and Dolby AAC [10]. To transform signals into 

sparse representations, i.e. representations where most 

coefficients are zero. These sparse representations are 

proving to be a particularly interesting and powerful 

tool for analysis and processing of audio signals. 

 

Audio signals are typically generated either by resonant 

systems or by physical impacts, or both. Resonant 

systems produce sounds that are dominated by a small 

number of frequency components, allowing a sparse 

representation of the signal in the frequency domain. 

Impacts produce sounds that are concentrated in time, 

allowing a sparse representation of the signal in either 

directly the time domain, or in terms of a small number 

of wavelets. The use of sparse representations therefore 

appears to be a very appropriate approach for audio. 

 

Suppose we have a sampled audio signal with T 

samples x(t), 1≤ t ≤ T ,which we can write  in a row 

vector form a  ̅ = (x(1),…x(T)). )). For audio signals 

we are typically dealing with signals sampled below 20 

kHz, but for simplicity we will assume our sampled 
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time t takes integer values. it is often convenient to 

decompose  ̅   into a weighted sum of basis vectors 

 ̅ = (ϕq(1),…, ϕq(T)) , with the contribution of the q-th 

basis vector weighted by a coefficient uq: 

 ̅   ̅ ϕ 

where ϕ is the matrix with elements [ϕ]qt= ϕq(t) 

The most familiar representation of this type in audio 

signal processing is the (Discrete) Fourier 

representation. Here we have the same number of basis 

vectors as signal samples (Q=T), and the basis matrix 

elements are given by 

ϕq(t) = 
 

 
exp (

   

 
  ) 

Now it remains for us to find the coefficients uqin this 

representation of  ̅ . In the case of our Fourier 

representation, this is straightforward: the matrix  ϕ is 

square and invertible, and in fact orthogonal, so  ̅ can 

be calculated directly as 

 ̅   ̅ (Tϕ
H
)= ̅ ϕ

-1
 

where the superscript H denotes the conjugate 

transpose. 

 

Signal representations corresponding to invertible 

transforms such as the DFT, the discrete cosine 

transform (DCT), or the discrete wavelets transform 

(DWT) are convenient and easy to calculate. However, 

it is possible to find many alternative representations. 

In particular, if we allow the number of basis vectors 

(and hence coefficients) to exceed the number of signal 

samples, Q>T. sparse representations, i.e. 

representations where only a small number of the 

coefficients of u are non-zero. 

 

E. Ambient phase estimation with a sparsity 

constraint: 

The diffuseness of ambient components usually leads 

to low correlation between the two channels. To 

produce diffuse ambient components from raw 

recordings, decorrelation techniques are commonly 

used, which mainly include artificial diffuse 

reverberation that are widely used in studio, as well as 

other decorrelation techniques, such as introducing 

delay all-pass filtering and binaural reverberation. 

These decorrelation techniques typically produce equal 

magnitude of ambient components in the two channels 

of the stereo signal. The stereo signal model is 

expressed as: 

Xc[n,b]=Pc[n,b]+Ac[n,b]      {0,1},         (1) 

where Pc and Ac are the primary and ambient 

components in the cth channel of the stereo signal, 

respectively. Since the subband of the input signal is 

generally used in the analysis of PAE approaches, the 

indices [n,b] are omitted for brevity. As such, we can 

express the spectrum of ambient components as 

Ac = |Ac| ʘ Wc        {0,1},               (2) 

where ʘ denotes element-wise Hadamard product, 

|Ac|=|A| represents the equal magnitude of the ambient 

components, and the element in the bin (n, l) of Wc is 

expressed as  Wc(n,l)= e
jθc(n,l) 

, where θc (n,l) is the bin 

(n, l) of θc and θc= Ac  is the phase (in radians) of the 

ambient components. Considering the panning of the 

primary component P1 =kP0, the primary component in 

(1) can be eliminated and (1) can be reduced to  

X1 - kX0 = A1 – kA0                         (3) 

By substituting (2) into (3), we have  

|A| = (X1 – kX0) ./ (W1 – kW0)              (4) 

Where ./ represents the element-wise division. Because 

|A| is real and non-negative, we derive the relation 

between the phases of the two ambient components as  

θ0 = θ+arcsin[ k
-1 

sin(θ- θ1)] +  ,             (5) 

where θ=  (X1 – kX0). Furthermore, by substituting (4) 

and (2) into (1), we have  

Ac =(X1 – kX0) ./ (W1 – kW0)ʘWc, 

Pc =Xc- (X1 – kX0) ./ (W1 – kW0)ʘWc.       (6) 

Since Xc and k can be computed from the input [4], Wc 

is the only unknown variable in the right hand sides of 

(6). It becomes clear that the primary and ambient 

components are determined by Wc, which is solely 

related to the phase of the ambient components. 

Therefore, we reformulate the PAE problem into an 

ambient phase estimation (APE) problem. Based on the 

relation between θ0 and θ1 in (5), only θ1 needs to be 

estimated. A critical relation in the APE framework is 

that good extraction performance can be obtained via 

accurate estimation of ambient phase. Such a relation is 

a key advantage of APE formulation as similar 

relations are not found in existing PAE frameworks 

(e.g., time-frequency masking [1] or linear estimation 

based PAE [4]).  

 

In general, estimation of ambient phase requires 

additional criteria that are based on the characteristics 

of the primary and ambient components. One of the 

most important characteristics of sound source signals 

is sparsity, which has been widely used as the critical 
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criterion in finding optimal solutions in many audio 

and music signal processing applications [5]. In PAE, 

since the primary components are essentially sound 

sources, they can be considered to be sparse in the 

time-frequency domain [5]. Therefore, we estimate θ1 

by restricting the extracted primary component to be 

sparse, i.e., minimizing the sum of the magnitudes of 

the primary components for all time-frequency bins: 

 ̂1
*
= arg     ̂ 

‖ ̂ ‖                        (7) 

 

Table 1. Steps in APES 
1 Transform the input signal into time frequency 

domain X0, X1,pre-compute k, choose D, repeat 

steps 2-7 for every time-frequency bin. 

2 Set d=1,compute θ= (X1 – kX0),repeat steps 3-6 

3  ̂1(d) = 2ᴫd/D-ᴫ 

4 Compute  ̂0(d) using eq.(5), and   ̂0(d),  ̂1(d) 

5 Compute   ̂1(d) using eq.(6) and | ̂1(d)| 

6 d  d+1, until d=D 

7 Find                      | ̂    |  , repeat 

steps 3-5 with d= d
*
 and compute the other 

components using eq.(6) 

8 Finally, compute the time-domain primary and 

ambient components using inverse time-

frequency transform. 

 

We refer to this approach as the ambient phase 

estimation with a sparsity constraint. However, the 

objective function in (7) is not convex. Therefore, 

convex optimization techniques are inapplicable, and 

heuristic methods, such as simulated annealing (SA) [6] 

are more suitable to solve APES. But SA might not be 

efficient since optimization is required for all the phase 

variables. Based on the following two observations, we 

propose to use a simple but more efficient method to 

estimate the ambient phase. First, the magnitude of the 

primary component is independently determined by the 

phase of the ambient component at the same time-

frequency bin and hence, the estimation in (7) can be 

independently performed for each time-frequency bin. 

Note that with this approximation, a sufficient 

condition of the sparsity constraint is applied in 

practice. Second, the phase variable is bounded to (-ᴫ,ᴫ] 

and high precision of the estimated phase may not be 

necessary. Thus, we select the optimal phase estimates 

from an array of discrete phase values 

 ̂1(d) = (2ᴫd/D-ᴫ) 

where d            with D being the total number 

of discrete phase values to be considered. We refer to 

this method as discrete searching (DS). Following (5) 

and (6), D estimates of the primary components can be 

computed. The estimated phase then corresponds to the 

minimum of magnitudes of the primary component, i.e., 

 ̂*
1 =  ̂1(d

*
),  

         
           

  ̂      

Clearly, the value of D affects the extraction and the 

computational performance of APES using DS. The 

detailed steps of APES are listed in Table 1. 

 

In addition to the proposed APES, we also consider a 

simple way to estimate the ambient phase based on the 

uniform distribution, i.e.,  ̂1
U  U (-ᴫ,ᴫ] This approach 

is referred to as APEU, and is compared with the APES 

to examine the necessity of having a more accurate 

ambient phase estimation . Developing a complete 

probabilistic model to estimate the ambient phase, 

though desirable, is beyond the scope of the present 

study.  

IV. RESULTS 
 

Experiments using synthesized mixed signals were 

carried out to evaluate the proposed approach. One 

frame (consists of 4096 samples) of speech signal data 

is selected as the primary component, which is 

amplitude panned to channel 1 with a panning factor k 

= 4, 2, 1. A wave lapping sound recorded at the beach 

is selected as the ambient component, which is 

decorrelated using all-pass filters with random phase 

[7]. The stereo input signal is obtained by mixing the 

primary and ambient components using different values 

of primary power ratio ranging from 0 to 1 with an 

interval of 0.1. 

 

Our experiments compare the extraction performance 

of APES, APEU, PCA [2], and two time-frequency 

masking approaches: Masking 1 [3] and Masking 2 [1]. 

In the first three experiments, DS with D = 100 is used 

as the searching method of APES. 

 
Figure 3. Comparison of ambient phase estimation 

error between APES and APEU with k=4,2,1. Legend 

in k=4 applies to all the plots. 
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Figure 4. ESR of extracted primary component and 

extracted ambient component with respect to 3 

different values of primary panning factor(k=4,2,1), 

using APES,APEU,PCA+ICA,Masking1,Masking2. 

 

Extraction performance is quantified by the error-to-

signal ratio (ESR, in dB) of the extracted primary and 

ambient components, where lower ESR indicates a 

better extraction. The ESR for the primary and ambient 

components are computed as  

ESRy = 10     {∑
‖  ̂   ‖   

 

 ‖  ‖   
 

 
   }  y = p , or a.     (8) 

 

First, we examine the significance of ambient phase 

estimation by comparing the performance of APES 

with APEU. In Fig.3 we show the mean phase 

estimation error and it is observed that compared to a 

random phase in APEU, the phase estimation error in 

APES is much lower. As a consequence, ESRs in 

APES are significantly lower than those in APEU, as 

shown in Fig.4. This result indicates that obviously, 

close ambient phase estimation is necessary. 

 

Second, we compare the APES with some other PAE 

approaches in the literature. From Fig.4, it is clear that 

APES significantly outperforms other approaches in 

terms of ESR for       and k  , suggesting that a 

better extraction of primary and ambient components is 

found with APES when primary components is panned 

and ambient power is strong. When k = 1, APES has 

comparable performance to the masking approaches, 

and performs slightly better than PCA and ICA for 

    . Referring to Fig.3 that, the ambient phase 

estimation error is similar for different k values, we can 

infer that the relatively poorer performance of APES 

for k = 1 is an inherent limitation of APES. Moreover, 

we compute the mean ESR across all tested   and k 

values and find that the average error reduction in 

APES over PCA,ICA and the two time-frequency 

masking approaches are 3.1, 3.5, and 5.2 dB, 

respectively. Clearly, the error reduction is even higher 

(up to 15 dB) for low   values. 

 

Table 2.Comparison of APEPS with different 

searching methods 

 

Method 

 

Computation 

time (s) 

      

ESRP 

(dB) 

 

    ESRA 

(dB) 

DS(D=10) 0.18 -7.28 -7.23 

DS(D=100) 1.62 -7.58 -7.50 

    SA 426 -7.59 -7.51 

 

Lastly, we compare the performance, as well as the 

computation time among different searching methods 

in APES: SA, DS with D = 10 and 100. The results 

with   = 0.5 and k = 4 are presented in Table II. It is 

obvious that SA requires significantly longer 

computation time to achieve similar ESR when 

compared to DS. More interestingly, the performance 

of DS does not vary significantly as the precision of the 

search increases (i.e., D is larger). However, the 

computation time of APES increases almost 

proportionally as D increases. Hence, we infer that the 

proposed APES is not very sensitive to phase 

estimation errors and therefore the efficiency of APES 

can be improved by searching a limited number of 

phase values [8]. 

 

However, it shall be noted that the influence of time-

frequency transform, though not studied in this paper, 

is very critical and requires further investigation. 

Meanwhile, the performance of these PAE approaches 

shall also be evaluated using more practical signals. 

Moreover, ambient components in the complex signals 

are more prone to inter-channel magnitude variations, 

and therefore probabilistic approaches based on the 

statistics of these variations shall be studied to improve 

the robustness of PAE approaches. 

 

V. CONCLUSIONS 
 

We presented a novel approach to solve the PAE 

problem using APES. Considering that the diffuse 

ambient components in two channels of a stereo signal 

exhibit equal magnitude, the PAE problem is 

reformulated as an ambient phase estimation problem. 
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Our novel APE formulation provides a promising way 

to solve PAE as the extraction performance is solely 

determined by ambient phase estimation accuracy. In 

this paper, APE is solved based on the sparsity of the 

primary components. Based on our experiments using 

synthesized signals, we found that though under 

imperfect ambient phase estimation, the proposed 

approach still showed significant improvement (3-6 dB 

average reduction in ESR) over existing approaches, 

especially in the presence of strong ambient 

components and panned primary components.  

 

Moreover, the efficiency of APES can be improved by 

lowering the precision of the phase estimation, without 

introducing significant degradation on the extraction 

performance. Future work includes the study on the 

influence of time-frequency transform, handling more 

complex stereo and multichannel signals using 

probabilistic models, and other optimization criteria in 

APE. 
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