
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi :https://doi.org/10.32628/CSEIT1825411

705

Modernizing Service Assurance: Migration and Optimization of
IBM Netcool in OpenShift Environments

Satyanarayana Murthy Polisetty
Jawaharlal Nehru Technological University, Kakinada, India

Article Info

Publication Issue :

Volume 7, Issue 2

March-April-2021

Page Number : 705-708

Article History

Accepted: 03/03/2021

Published: 25/03/2021

ABSTRACT

This article investigates the complexities of migrating and optimizing IBM

Netcool Operations Insight (NOI) within OpenShift Container Platform (OCP).

It provides a detailed analysis of architectural considerations, practical

migration strategies, and optimization techniques, focusing on the upgrade

from NOI 1.6.4 to 1.6.5. The study explores the integration of Kafka-based

probes and JDBC gateways, alongside the automation of deployments using

JFrog Artifactory. The findings offer valuable insights for IT architects, DevOps

engineers, and Netcool administrators seeking to enhance service assurance in

modern cloud-native environments, highlighting the benefits of

containerization and automation in improving operational efficiency and

scalability.

Keywords : IBM Netcool Operations, OpenShift Container Platform (OCP),

JFrog Artifactory, IBM Netcool Operations Insight (NOI), Kafka

1. INTRODUCTION

The landscape of IT operations is undergoing a rapid

transformation, driven by the adoption of cloud-

native technologies and microservices architectures.

In this context, legacy monitoring and service

assurance tools like IBM Netcool Operations Insight

(NOI) must evolve to meet the demands of dynamic

and scalable environments. Modernizing NOI

through migration to containerized platforms like

OpenShift Container Platform (OCP) offers

significant advantages in terms of resource utilization,

deployment speed, and operational agility. This article

addresses the critical challenges and best practices

associated with this modernization process, providing

a roadmap for successful implementation.

The transition from traditional monolithic

deployments to containerized environments

introduces a set of unique challenges. These include

managing stateful applications in a stateless container

environment, ensuring seamless integration with

existing IT infrastructure, and optimizing

performance in a distributed architecture.

Furthermore, upgrading NOI versions, especially

within a containerized platform, requires meticulous

planning and execution to minimize downtime and

maintain service continuity. Addressing these

challenges necessitates a comprehensive

understanding of both NOI architecture and OCP

capabilities.

This study contributes by providing a practical guide

to migrating and optimizing NOI in OCP

http://ijsrcseit.com/
http://ijsrcseit.com/

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

706

environments. It details the architectural

considerations, step-by-step migration procedures,

and optimization techniques, including the

integration of Kafka-based probes and JDBC gateways.

Moreover, it explores the automation of deployments

using JFrog Artifactory, streamlining the deployment

process and enhancing operational efficiency. The

article aims to equip IT professionals with the

knowledge and tools necessary to successfully

modernize their NOI deployments, thereby

improving service assurance and operational

resilience.

2. STUDY METHODOLOGY

This study employed a mixed-methods approach,

combining in-depth analysis of existing

documentation with practical implementation and

testing in a controlled environment. The initial phase

involved a comprehensive review of IBM

documentation and best practices related to NOI

deployment and migration. This included analyzing

architectural diagrams, deployment guides, and

troubleshooting procedures.

A pilot environment was set up using OpenShift

Container Platform 4.x, replicating a production-like

setup. This environment included the deployment of

NOI 1.6.4, followed by a staged upgrade to NOI 1.6.5.

The upgrade process was meticulously documented,

focusing on the challenges encountered and the

solutions implemented.

The study then focused on the integration of Kafka-

based probes and JDBC gateways. Kafka, a distributed

streaming platform, was used to ingest and process

event data, while JDBC gateways facilitated

communication with relational databases. The

integration process involved configuring Kafka topics,

creating custom probes, and setting up JDBC

connections.

Automation of deployments was implemented using

JFrog Artifactory, a universal artifact repository.

Artifactory was used to store and manage container

images, configuration files, and deployment scripts.

This enabled the creation of automated pipelines for

deploying and upgrading NOI components, reducing

manual intervention and minimizing errors.

Performance testing was conducted to evaluate the

impact of containerization and optimization

techniques on NOI performance. This involved

measuring key metrics such as event processing

latency, resource utilization, and system throughput.

The results were analyzed to identify bottlenecks and

areas for further optimization.

Throughout the study, continuous feedback was

gathered from IT architects and Netcool

administrators, providing valuable insights into real-

world challenges and best practices. This iterative

approach ensured that the study's findings were

practical and relevant to the target audience.

The methodology also included a comparative

analysis of traditional NOI deployments versus

containerized deployments in OCP. This comparison

highlighted the benefits of containerization in terms

of scalability, resource efficiency, and deployment

speed. Historical data from earlier Netcool

deployments were reviewed to provide context and

demonstrate the evolution of service assurance

practices.

3. TECHNICAL IMPLEMENTATION

The technical implementation began with the

deployment of NOI 1.6.4 in OCP. This involved

creating OpenShift projects, deploying container

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

707

images, and configuring persistent volumes for data

storage. The NOI components, including

ObjectServer, Web GUI, and Impact, were deployed

as stateful sets and deployments.

The upgrade from NOI 1.6.4 to 1.6.5 was performed

using the IBM Cloud Pak for Watson AIOps installer.

This tool facilitated the upgrade process, automating

the migration of configuration data and application

components. The upgrade process was divided into

stages, with each stage thoroughly tested to ensure

data integrity and service continuity.

Integration of Kafka-based probes involved deploying

Kafka brokers and creating topics for event data.

Custom probes were developed to ingest events from

various sources and publish them to Kafka topics. The

NOI Impact component was configured to subscribe

to these topics and process the event data.

JDBC gateways were configured to connect to

relational databases, enabling NOI to retrieve and

update data from these sources. This involved

creating JDBC data sources, configuring connection

pools, and writing SQL queries. The gateways were

deployed as containerized applications within OCP.

Automation of deployments was implemented using

JFrog Artifactory. Artifactory was configured to store

container images, Helm charts, and deployment

scripts. Pipelines were created using Jenkins to

automate the build, test, and deployment of NOI

components. These pipelines were triggered by code

commits and configuration changes, ensuring

consistent and repeatable deployments.

OpenShift's built in monitoring tools were used to

track resource utilization, application performance,

and system health. This allowed the team to pinpoint

bottlenecks and optimize the system for optimal

performance.

Security implementation was a major part of the

technical implementation. Integrating OCP’s security

features with Netcool components. Utilizing

OpenShift’s role-based access control (RBAC) to limit

access to Netcool resources. Implementing secure

communication between Netcool components and

external systems using TLS encryption.

4. RESULTS AND ANALYSIS

The migration of NOI to OCP resulted in significant

improvements in deployment speed and resource

utilization. Containerized deployments reduced

deployment times from hours to minutes, enabling

faster response to changing business requirements.

Resource utilization was optimized through dynamic

scaling and efficient resource allocation, leading to

cost savings.

The integration of Kafka-based probes and JDBC

gateways enhanced event processing capabilities and

data integration. Kafka enabled high-throughput

event ingestion and processing, while JDBC gateways

facilitated seamless communication with relational

databases. This improved the accuracy and timeliness

of service assurance data.

Automation of deployments using JFrog Artifactory

streamlined the deployment process and reduced

manual errors. Automated pipelines ensured

consistent and repeatable deployments, minimizing

downtime and improving operational efficiency.

Performance testing demonstrated that containerized

NOI deployments in OCP achieved comparable or

better performance compared to traditional

deployments. Event processing latency was reduced,

and system throughput was increased.

The upgrade from NOI 1.6.4 to 1.6.5 was successfully

completed with minimal downtime. The new version

provided enhanced features and improved stability,

contributing to better service assurance.

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

708

5. CONCLUSION

Migrating and optimizing IBM Netcool Operations

Insight in OpenShift Container Platform offers

significant advantages in terms of scalability,

efficiency, and agility. By leveraging containerization

and automation, organizations can modernize their

service assurance practices and enhance operational

resilience.

The integration of Kafka-based probes and JDBC

gateways improves data processing and integration

capabilities, enabling more accurate and timely

service assurance. Automation using JFrog Artifactory

streamlines deployments and reduces manual errors,

contributing to operational efficiency.

This study provides a practical guide for IT architects,

DevOps engineers, and Netcool administrators

seeking to modernize their NOI deployments. By

following the best practices and recommendations

outlined in this article, organizations can successfully

migrate and optimize NOI in OCP environments,

thereby improving service assurance and enhancing

operational performance.

References:

[1] Mell, P., & Grance, T. (2011). The NIST

definition of cloud computing. National

Institute of Standards and Technology, 53(6),

50.

[2] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J.,

& Brandic, I. (2009). Cloud computing and

emerging IT platforms: Vision, hype, and

reality for delivering computing as the 5th

utility. Future generation computer systems,

25(6), 599-616.

[3] Fnu, Y., Saqib, M., Malhotra, S., Mehta, D.,

Jangid, J., & Dixit, S. (2021). Thread mitigation

in cloud native application Develop- Ment.

Webology, 18(6), 10160–10161,

https://www.webology.org/abstract.php?id=533

8s

[4] Armbrust, M., Fox, A., Griffith, R., Joseph, A.

D., Katz, R., Konwinski, A., ... & Zaharia, M.

(2010). A view of cloud computing.

Communications of the ACM, 53(4), 50-58.

[5] Dean, J., & Ghemawat, S. (2004). MapReduce:

simplified data processing on large clusters.

Communications of the ACM, 51(1), 107-113.

[6] Ousterhout, J., Rosencrantz, R., Agrawal, A.,

Armbrust, M., Gupta, R., Hinshaw, D., ... &

Zaharia, M. (2015). Sparrow: distributed, low-

latency scheduling. ACM SIGOPS Operating

Systems Review, 49(1), 175-190.

[7] J. Jangid, "Efficient Training Data Caching for

Deep Learning in Edge Computing Networks,"

International Journal of Scientific Research in

Computer Science, Engineering and

Information Technology, vol. 7, no. 5, pp. 337–

362, 2020. doi: 10.32628/CSEIT20631113

[8] Brewer, E. A. (2012). CAP twelve years later:

how “rules” have changed. Computer, 45(2),

23-29.

[9] Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis,

G., & Vakali, A. (2009). Cloud computing:

distributed internet computing for IT and

scientific research. Internet computing, 13(5),

10-13

[10] Vaquero, L. M., Rodero-Merino, L., Caceres, J.,

& Lindner, M. (2009). A break in the clouds:

towards a cloud definition. ACM SIGCOMM

Computer Communication Review, 39(1), 50-

55.

[11] Bernstein, D. (2009). Containers and cloud:

From lxc to docker to kubernetes. IEEE Cloud

Computing, 1(3), 81-84.

