
Copyright: © the author(s), publisher and licensee Technoscience Academy. This is an open-access article distributed
under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-
commercial use, distribution, and reproduction in any medium, provided the original work is properly cited

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

ISSN : 2456-3307 (www.ijsrcseit.com)

doi :https://doi.org/10.32628/IJSRCSEIT

712

Software Testing Best Practices in Large-Scale Projects
Mouna Mothey

Independent Researcher, USA

Article Info

Publication Issue :

Volume 3, Issue 6

July-August-2018

Page Number : 712-721

Article History

Received: 12/07/2018

Accepted: 19/08/2018

Published: 30/08/2018

ABSTRACT

Innovative and long-lasting testing techniques are required as the difficulties of

testing software programs rise in tandem with their complexity and scope. —A

crucial step in the software development process is software testing.

Unfortunately, despite testing efforts, defects still plague many projects, and

testing still consumes a large amount of time and money. Software testing offers

a way to lower the system's total cost and mistake rate. To improve software

quality, a variety of software testing approaches, strategies, and tools are

available. Given its importance in both the earlier and later creation phases,

software validation is an essential component of the life cycle of software

development. Should be supported by improved and effective processes and

procedures. This article offers a brief overview of software testing, including its

goals and fundamentals. Additionally it also responds to inquiries concerning the

fundamental abilities needed for software testers, or those who want to pursue a

career in testing. Focuses on the fundamentals that are considered while creating

test cases and planning. Writing effective test cases is another topic covered in

this article. This is among the crucial elements in testing.

Keywords :- Software Development Lifecycle, Software Applications,

Development Process, Software Quality, Automation Testing, Test Driven, Test

Data, Test Optimisation, Test Cases.

I. INTRODUCTION

The growth of large-scale applications has brought

about a new age of complexity and creativity in the

ever-changing field of software development. The

testing process faces several difficulties as these

applications develop and becoming more complicated,

necessitating a long-term and strategic strategy. With

an emphasis on test automation, this study aims to

investigate and tackle the particular testing

difficulties that come with large-scale software

programs, emphasizing the need for comprehensive

options in the areas of examination methodologies,

tools, techniques, environments, and challenges [1].

Large-scale applications provide complexity that goes

beyond the conventional limits of testing techniques.

It takes a deep comprehension of complicated

circumstances [2] to ensure the security, performance,

and dependability of such large-scale systems. By

analysing the unique issues that come up while

testing applications on a large scale and putting out a

comprehensive plan for sustainable test techniques,

this study seeks to add to the body of knowledge

already in existence [2, 3].

http://ijsrcseit.com/
http://ijsrcseit.com/

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

713

An essential component of the software production

lifecycle is testing [2, 3]. Testing is done to make sure

a software product satisfies both functional and non-

functional criteria. Because errors may have major

effects on the economy, software testing has become

even more important as software has grown in the

dimensions and complexity [3, 4]. Test cases are

essential to testing, and developing and keeping track

of them takes a lot of effort from practitioners.

However, it is often seen that problems arise in

applications despite testing efforts. Furthermore,

when systems change, testing efforts for many

projects remain high [3, 4]. These raise concerns

about the quality of test cases and lead us to look at

what constitutes excellent test cases. Numerous

empirical investigations have examined a range of

testing topics, including automated test generating

tools, coverage, mutants, and issue identification [4].

The majority of test cases nowadays are made by hand,

even if many of these research investigations take into

account test cases that are produced automatically -

c.f [5].

The testing domain is divided by two complementary

test forms: checking and exploring. Similarly, explain

how automated testing and exploratory testing are

complementary:

“Automation and exploratory testing complement one

other rather than conflict. The exploratory testers

may test anything the team didn't consider before

developing since automation takes care of the daily

repeated regression testing (checking) [5, 6].”

We created a test methodology for preliminary

evaluation of massive operations systems in our

earlier work. We demonstrated that exploratory

testing contributes to the continually evolving

delivery and integration pipeline for a huge-scale

software program (with automated evaluation and

exploratory testing complimenting one another) [6]

based on a research that included both quantitative

and qualitative data [6, 7]. The exploration test teams

in the case study generated more issue reporting than

other test teams, according to quantitative data

gathered for the research, demonstrating the

effectiveness of exploratory testing as a test

methodology [6, 7].

Fig. 1 Each project of software has an ideal amount of

testing.. [6]

• Need of Software Testing

To show that the program is doing its intended

functions and that it is not performing its intended

functions [6, 7].

⎯ Fundamental objective: The main objective of

testing is to find and correct defects as soon as

possible; this indicates that the purpose is not to

patch the code but rather to search for and

uncover program or code flaws as soon as

possible [7, 8]. Either the testing process or the

cases for testing need to be modified if a flaw

cannot be identified in the code. It is the tester's

duty to create accurate test cases in order to find

any hidden defects in the software or program

[8].

1. Bugs: Prior to comprehending the principles of

identifying flaws or faults in code, we need to

grasp how these issues arise in software [8, 9].

The following causes lead to software bugs:

2. Unclear requirements: Either the client is unclear

about what they need or desire, or occasionally

they are unable to express what they need [9].

3. Programming errors: Additionally, it sometimes

occurs that developers build software incorrectly,

either because they have poor programming

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

714

abilities or because they make incorrect

assumptions [9, 10].

4. Poor documentation: Lack of transferring

knowledge exacerbates the issue when

developers quit their present project in the

middle of their work; in these situations, new

developers are allocated halfway through the

project [10].

5. Communication gap: There is often a

communication breakdown between the

software developers and the people handling the

requirements [10,11], which leads to project

developers having the erroneous idea.

6. Changing requirements: Any modification

becomes a burden for the whole team, which

leads to incorrect implementation of

requirements or the omission of some from the

code [11].

7. Defect: Anything that we must eliminate from

our code via testing is considered a defect. A

defect might be described as something that

software development should not do but that the

product specification requires it to do [11].

Anything the program does that the product

description states it shouldn't do is considered a

defect. Anything that software performs that is

not included in the product specification is

considered a defect [11, 12]. Anything that

software should perform but doesn't and isn't

included in the product specification is

considered an imperfection [12].

• SOFTWARE TESTING PROCESS

Testing is done to find code flaws and ensure that the

program is error-free [12]. One must adhere to a

systematic testing approach in order to implement

testing correctly and get better outcomes.

• Testing process includes

⎯ Test planning: This section outlines the test

objective, test schedule, and test approach,

which means that before beginning any testing,

the tester must properly plan, specify the

testing goal (i.e., what we want to test), and

then choose the appropriate timing or schedule

(i.e., when testing will be finished) [12]. This

exam plan also includes responses to questions

like:

⎯ What we have to test?

⎯ What are the test case's pass and fail criteria?

⎯ Which software and hardware environments

are required?

⎯ Which features need to be tested—all of them

or just part of them—must be determined in

the test plan?

⎯ Which features are we not interested in testing?

[12],

⎯ Given the large number of participants, what

are the roles and duties of the persons and

organizations working on the project?

To some degree, effective planning will lead to good

test outcomes, thus there are some principles to create

the test plan, such as:

• Start early.

• Maintain the test plan's flexibility.

• Examine the test plan often. [11],

• Make sure your test plan is brief, clear, and easy

for others to read.

• Compute the planned activities [12].

⎯ Test Design: One must develop the various

test cases and rank them as soon as the

timetable is determined. These are reviewed

by an inspector, reviewer, or higher-ranking

official, such as the test manager, once they

are designed [11, 13]. This requires the tester

to create quality test cases. A test case is a

collection of inputs, execution requirements,

and anticipated results created for a specific

goal. According to IEEE Standard 610 (1990),

a test case is a collection of test inputs,

execution circumstances, and anticipated

outcomes created for a specific goal, such

exercising a certain program route or

confirming adherence to a particular

requirement [13].

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

715

For designing some essentials are:

⎯ All of the key characteristics should be covered

when we create the test cases [13].

⎯ Normal, aberrant, and boundary test scenarios

are all balanced.

⎯ Testing techniques, such as black box and white

box testing, functional and non-functional

testing, static and dynamic testing, and so on, are

balanced [14].

Some characteristics of Good test cases are:

• An accurate, cost-effective, repeatable, traceable,

self-standing, and self-cleaning test case is

essential [14, 15].

• An accurate test case is one one will be tested in

accordance with its description.

• Only required actions that accomplish the goal

are included in a good test case; extraneous

processes are avoided [15].

• A good test case is self-standing, meaning that

regardless of who tests it, it will always provide

the same findings.

• A successful test scenario will be suitable for the

environment and testers [15].

Above all, these are the elements that demonstrate

excellent test cases; however, writing good test cases

is another matter. Some crucial elements in writing

effective test cases include:

• Improve testability of the test cases: Testability

refers to the ease of testing [15]. Since the link or

steps should be obvious and intelligible to

anyone who performs the test cases, test actions

will be written in current cases.

• Improve accurately: When testers adhere to the

instructions, the outcome—whether successful or

unsuccessful—will be accurate [15].

Test Cases common mistakes:

• Avoid creating lengthy test cases or combining

two or more test cases into a single test case [15].

It's feasible that a single test case might verify

several criteria and include numerous outcomes.

• Testers get confused by incomplete or incorrect

test cases.

• Aim to avoid omitting any steps in test cases

since doing so will make it difficult for testers to

execute the test cases because they may not

know how to finish them [15].

• Occasionally, it's unclear whether the system or

tester takes any actions that put the tester in a

precarious position and leave them unsure of

what to do next [16, 17].

Test Case Design stages:

Test cases must be properly designed before being

conducted in order to ensure that the testing process

runs smoothly [15].

⎯ Identify the test resources: It is advised that the

procedure be developed after determining the

degree of assets allotted for the test's

information tool [16].

• As previously stated, determine which test

conditions must be employed in the test cases;

the testing a matrix is used for this purpose.

• To determine which conditions will be

examined first, the test conditions will be

ranked. The condition we want to test is chosen

based on ranking, and at this point, the

requirements should be quite detailed [16].

• Every test case should be assigned a distinct

number.

⎯ Test Implementation: Depending on the needs,

we may also use a variety of automated

technologies to construct test scripts that will

run the test cases that we generate for testing

[16, 17].

⎯ Test Execution: To do this, run the test cases or

scripts in the test environment and use defects

reporting applications to inform developers and

management of any issues so that the code is

free of errors [17].

⎯ Test Analysis: Key indicators are calculated

using project and test metrics [17, 18].

⎯ Test Review: It is utilized for future

perspective, which involves talking about the

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

716

lessons gained from the difficulties that have

been phased in and figuring out ways to avoid

them in the future [17, 18].

• Test Initiation Criteria

The question of when to begin testing is another one.

Therefore, timing is crucial for this [18] because we

can begin testing as soon as we have software

requirements or baselines. This is because improper

requirements lead to incorrect design and

implementation, and once implementation is

complete, it becomes extremely difficult and costly to

identify and fix any flaws. Therefore, the goal of

testing is to identify requirements-related flaws as

soon as feasible [17, 18].

⎯ Test complete criteria: Since full testing and

completely defect-free software are not

achievable, we must take into account some

metrics or conditions before we can halt the

testing process. Many factors are taken into

consideration when determining when testing

should conclude, such as project testing

deadlines, release deadlines, test case completion

with a certain % passed, the conclusion of the

Alpha and Beta testing periods, or when testing

reaches its peak level. The graph indicates that

although the number of problems continues to

decrease over time, costs are also increasing

exponentially [18, 19]. The intersection of these

two lines or charts provides us with the ideal

amount of testing. Figure 2 shows that anybody

may cease testing at this stage in order to balance

the risk and expense of testing [19].

Fig. 2 Diagram for optimum level of testing. [20]

1. Participants in testing: Upon further examining

the testing procedure, we find that almost every

member of the software development group, in

addition to users or clients, participates in the

testing procedure [20, 21]. Even though their

degree of participation may vary, their presence

is just as crucial to the testing process'

effectiveness [21, 22]. For example, clients may

participate in the analysis stage, users in alpha

and beta evaluation, developers in unit

examination, managers in the release of

problems, and auditors in the verification of

various software testing policies and procedures

[22, 23]. Testing difficulties: Given the many

difficulties in the testing procedure, such as:

• Testing is seen as a late project.

• The requirements cannot be tested.

• It is challenging to gauge test progress [23,

24].

• It is not feasible to do thorough testing.

Therefore, there may be certain guiding variables to

help avoid such issues. For example, when the

software team begins the project, test scheduling and

preparation may begin [25]. We can test tiny code as

we write it, rather than waiting until the last minute

to test the full product or code [25, 26]. Additionally,

organize how one integrates and tests the system

using repeatable procedures [27].

• Skills for Testers

To become an effective tester and pursue a career in

software testing, one needs a variety of abilities,

including the ability to read [27, 28], ask questions,

and communicate.

• Reading skills: Knowing what you read is a

prerequisite for this competence [28, 29]. Some

things to think about while reading include

asking questions about information collection

and looking for answers, classifying the

information that is found, and then reading it

again.

• Questioning skills: Asking questions like who

my client or customer is, what problems this

product is intended to solve, [28], what

problems this product could create, whether

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

717

you are the privilege person to answer the

question in question, whether anyone else can

provide more pertinent and additional

information, whether I missed something or

wanted to ask something, and whether I can

follow up with more questions later are all

necessary to become a good tester [28, 29].

• Communication skills: This is a necessary

ability for every tester. This ability will be

required while interacting with clients,

customers, developers, etc. Poor or ineffective

communication leads to miscommunication or

conflict.

• Other skills: In addition to the aforementioned

abilities, testers also need to be able to think

negatively in order to create negative test cases,

make decisions for testing, which calls for good

judgment, multitask by reading documents,

execute tests, and build teams, among other

things.

Software is a collection of computer-executed

instructions created and intended to carry out certain

tasks. Phases such as requirement analysis, design,

coding, testing, deployment, and software

maintenance are all part of the software development

process [29, 30]. Software testing is one of the most

crucial stages of the software development process.

Testing is done on the program before it is deployed.

Figure 1 any discrepancy between the predicted and

actual results might be considered a fault, which is

what software testing is all about. The practice of

examining or running software to look for errors is

known as software testing.

Fig. 3 Deployment and maintenance. [30]

Testing is the process of determining whether or not a

certain system satisfies the initial criteria. It is

primarily a validation and verification procedure that

determines if the produced system satisfies the user-

defined criteria [28, 29]. As a consequence, the actual

and predicted effects of this action vary. Program

testing is the process of identifying defects, mistakes,

or requirements that are missing from a created

system or program. Accordingly, this study gives the

stakeholders precise information on the product's

quality [29, 30]. Another way to think about software

testing is as a risk-based activity.

The most crucial aspect of the testing process is for

software testers to know how to reduce an enormous

amount of tests into a manageable test set and make

informed judgments about which risks are worth

testing and which are not [30, 31]. Figure 1 illustrates

the correlation between testing costs and mistakes.

Figure 1 makes it abundantly evident that the expense

of evaluating both functional and non-functional

kinds increases significantly. When choosing what to

test or cutting down on testing, many problems may

be missed. Doing the ideal number of tests to

minimize additional testing effort is the aim of

effective testing [31, 32].

The importance of software testing can be seen from

life-critical applications (e.g., flight control) testing,

which can be very costly due to the risk of schedule

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

718

delays, price overruns, or outright postponement, and

more [24, 28]. Figure 1 [23, 25] illustrates the

importance of software testing as a component of

computer software quality confidence.

• ENHANCEMENT IN TESTING PROCESSES

Test Suite Prioritization uses Combinational Criteria

to improve the testing process. Converting weblogs

into test suites pertinent to the user experience and

then putting it down in an XML format is the main

mechanism behind this test case prioritization. The

level of coverage calculated using combined test suites

should precisely prioritize the algorithm utilized for

this method. Furthermore, in order to analyse the

efficacy of the particular application and its associated

test suites, empirical research have to be conducted

[28, 29]. One tool employed in this context is called

C-PUT, which effectively transforms web application

logs into XML-formatted test suites. It is then utilized

to provide the capability for prioritizing these tests

[29]. The effectiveness of these test suite prioritization

strategies in improving the fault detection ratio is still

being investigated [29]. Another improvement in the

testing process is the use of Genetic Algorithms (GAs)

to generate test data automatically for application

testing. Previously, dynamic methods of test data

generation were a major problem in software testing,

so using Genetic Algorithm-based testing is an

efficient way to generate test data [29, 30]. It can also

handle data generation in accordance with the

complexity of the program [30, 31].

• Test Automation

Test automation, which involves using specific

software to conduct the testing process and

comparing actual results with predicted outcomes, is

the result of significant improvements in the testing

process [30, 31]. Because it eliminates the need for

time-consuming manual testing, the test automation

approach is time-effective. Both the implementation

and testing phases of the SDLC include test

automation. Automating test procedures is being used

globally in place of manual testing since it saves a

significant amount of time and completes the testing

procedures faster [30, 31]. By eliminating the

requirement for human testing and revealing the

quantity of mistakes and shortcomings that manual

testing is unable to detect, test automation has

supplanted it [31, 32].

When done by hand, regression testing, one of the

main testing kinds, takes a lot of time. Usually, it

checks to see whether the program or application

functions correctly after any bugs or defects have

been fixed. Because sometimes the error or bug ratio

of the code or program increases even more after the

error has been fixed [32, 34]. In order to reduce the

amount of time required for regression testing, a

collection of automation test suites is created

specifically for this purpose. Additionally, test

automation helps in identifying issues much sooner,

which saves a ton of money and effort on later stages

of change [35].

The environment that supports a word is usually

known as the Testing Framework, which is used to

execute automated testing. The testing framework is

primarily in charge of carrying out the tests,

specifying the language for expressing expectations,

and reporting the findings. Testing Framework's

application independence is its most notable attribute,

which contributes to its broad applicability across a

variety of disciplines globally. There are many types

of testing frameworks, such as hybrid, data-driven,

modular, and keyword-driven. The foundation of the

Modular Testing Foundation is the abstraction

concept, which calls for writing distinct scripts for

each of the software or application's modules that

need to be tested in order to separate each and every

element from a higher level.

The automatic test suites can be scaled and

maintained more easily thanks to this modular split.

Additionally, it becomes simple and quick to create

various driver scripts for various test kinds if the

library has the capabilities [31, 34]. The main

drawback of this kind of framework is that it embeds

data; thus, when the test data has to be amended or

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

719

upgraded, the whole test script code must be changed

[34]. This was the primary reason for the creation of

the Data Driven Test System. A single driver script

may run all test cases with several sets of data thanks

to this sort of framework, which ideally stores the test

data and anticipated outcomes in separate files [34,

35]. This kind of framework minimizes the quantity

of code needed to generate test cases and test scripts,

and it provides more flexibility in fixing faults or

flaws.

• Test Driven Development (TDD)

It is a methodology that uses automated unit tests to

force the decoupling of dependencies and drive

software architecture. Testers often discover one or

more flaws or faults during the standard testing

procedure [35], but TDD provides a clear indication

that something went well when the test subsequently

fails, increasing the degree of assurance that the

system satisfies its fundamental requirements. A

significant amount of time that may be lost during the

debugging process can be saved by using the TDD

technique [35]. Behaviour-driven development, or

BDD, is essentially an extension of development

driven by tests that focuses on the system's behaviour

rather than its implementation-level features. As a

result, the testing procedure is more efficient as it is

apparent what the system is meant to achieve. As a

result, BDD is mostly Test-driven Development

combined with Approval Testing, which generally

means testing to see whether the program or product

satisfies the requirements [35]. It is called User

Acceptance Testing if it is carried out by the target

user or client.

TESTING METRICS

• Prioritization Metrics

Utilizing test metrics is crucial as it may significantly

increase the efficacy of the testing procedure. They

function as a crucial gauge of the effectiveness,

accuracy, and analysis of specified metrics [29, 30].

Along with the next course of action or action that

must be followed to eradicate it, they may also assist

in identifying the areas that need improvement. Test

metrics serve as an umbrella for the ongoing

enhancement of the whole procedure for testing

rather than being a single stage in the STLC [30, 31].

Software testing metrics, which are divided into two

categories—process quality metrics and product

quality metrics—focus on the aspects of quality that

are pertinent to both the process and the final product.

Both metrics seek to improve both the testing

procedure and the quality of the final product [31].

• Process Quality Metrics

A process is the most important component as it can

provide a high-quality result in the shortest amount

of time and at the lowest possible cost [32]. This is the

main reason why businesses all over the globe have

focused on improving the performance of their

processes, and this is precisely where the demand for

metrics arose since it is necessary to effectively assess

the process from a variety of angles [33]. The primary

indicator of process quality is process efficiency,

which includes metrics such as the test progress curve,

which shows how the testing phase is expected to go

according to the test plan [34].

CONCLUSION

Since the ultimate product delivery depends on

testing, it is the most important phase of the software

production lifecycle. Since it is a laborious and time-

consuming procedure, better techniques and creative

approaches are needed. This makes it necessary to

include automated testing as well as other test metrics

both before and throughout the testing process. It

may improve the current testing procedures in terms

of time efficiency as well as the production of a

dependable and effective end product that not only

satisfies the standards but also offers the highest

operational efficiency.

These days, testing is commonly utilized to assist

developers in creating software that is free of defects.

Even if there are many different testing methods, it is

still crucial to properly organize the testing process. A

high-quality software or product devoid of defects

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

720

will be the outcome of careful test preparation. Test

case design is also crucial for effective planning. It

ought to cover every stage of the process. The success

of the testing process depends not only on preparation

but also on self-skills, meaning that testers must do

the testing with the intention of not finishing the

assignment but also from the bottom of their hearts.

II. REFERENCES

[1] E. Daka and G. Fraser, “A survey on unit testing

practices and problems,” in ISSRE, 2014, pp.

201–211.

[2] X. Xia, D. Lo, P. S. Kochhar, Z. Xing, X. Wang,

and S. Li, “Experience report: An industrial

experience report on test outsourcing

practices,” in ISSRE, 2015, pp. 370–380.

[3] X. Xia, D. Lo, J. Tang, and S. Li, “Customer

satisfaction feedback in an IT outsourcing

company: a case study on the Insigma Hengtian

company,” in EASE, 2015, pp. 34:1–34:5

[4] X. Xia, D. Lo, F. Zhu, X. Wang, and B. Zhou,

“Software internationalization and localization:

An industrial experience,” in ICECCS, 2013, pp.

222–231.

[5] R. Opdenakker, “Advantages and disadvantages

of four interview techniques in qualitative

research,” Forum: Qualitative Social Research,

(Last accessed on March 9, 2016), vol. 7, no. 4,

2006.

[6] B. Ray, D. Posnett, V. Filkov, and P. Devanbu,

“A large scale study of programming languages

and code quality in github,” in FSE, 2014, pp.

155–165.

[7] A. Zaidman, B. V. Rompaey, A. van Deursen,

and S. Demeyer, “Studying the coevolution of

production and test code in open source and

industrial developer test processes through

repository mining,” Empirical Software

Engineering, vol. 16, no. 3, pp. 325–364, 2011.

[8] J. Cleland-Huang and J. Guo, “Towards more

intelligent trace retrieval algorithms,” in

RAISE, 2014, pp. 1–6.

[9] G. Meszaros, XUnit Test Patterns: Refactoring

Test Code. Prentice Hall PTR, 2006.

[10] B. V. Rompaey, B. D. Bois, S. Demeyer, and M.

Rieger, “On the detection of test smells: A

metrics-based approach for general fixture and

eager test,” IEEE Transactions on Software

Engineering, vol. 33, no. 12, pp. 800–817, 2007.

[11] M. Greiler, A. van Deursen, and M.-A. Storey,

“Automated detection of test fixture strategies

and smells,” in ICST, 2013, pp. 322–331.

[12] F. Palomba and A. Zaidman, “Does refactoring

of test smells induce fixing flaky tests?” in

ICSME, 2017, pp. 1–12.

[13] Guide to the Software Engineering Body of

Knowledge, Swebok, A project of the IEEE

Computer Society Professional Practices

Committee, 2004.

[14] E. F. Miller, “Introduction to Software Testing

Technology”, Software Testing & Validation

Techniques, IEEE, 1981, pp. 4-16.

[15] M. Shaw, “Prospects for an engineering

discipline of software,” IEEE Software,

November 1990, pp.15-24.

[16] D. Nicola et al. "A grey-box approach to the

functional testing of complex automatic train

protection systems." Dependable Computing-

EDCC 5. Springer Berlin Heidelberg, 2005. 305-

317.

[17] J. A. Whittaker, “What is Software Testing?

And Why Is It So Hard?” IEEE Software, 2000,

pp. 70-79.

[18] N. Jenkins, “A Software Testing Primer”, 2008,

pp.3-15.

[19] Luo, Lu, and Carnegie, "Software Testing

Techniques-Technology Maturation and

Research Strategies’, Institute for Software

Research International-Carnegie Mellon

University, Pittsburgh, Technical Report, 2010.

[20] M. S. Sharmila and E. Ramadevi. "Analysis of

performance testing on web application."

International Journal of Advanced Research in

Computer and Communication Engineering,

2014.

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

721

[21] Siripong Roongruangsuwan, Jirapun Daengdej”

Test Case Prioritization Techniques”Journal of

Theoretical and Applied Information

Technology” (2005 – 2010).

[22] Shivkumar Hasmukhrai Trivedi “Software

Testing Techniques “Volume 2, Issue 10,

October 2012.

[23] S. Sampath and R. Bryce, Improving the

effectiveness of Test Suite Reduction for User-

Session-Based Testing of Web Applications,

Elsevier Information and Software Technology

Journal, 2012.

[24] B. Pedersen and S. Manchester, Test Suite

Prioritization by Costbased Combinatorial

Interaction Coverage International Journal of

Systems Assurance Engineering and

Management, SPRINGER, 2011.

[25] S. Sprenkle et al., "Applying Concept Analysis

to User-sessionbased Testing of Web

Applications", IEEE Transactions on Software

Engineering, Vol. 33, No. 10, 2007, pp. 643 –

658.

[26] C. Michael, “Generating software test data by

evolution, Software engineering”, IEEE

Transaction, Volume: 27, 2001.

[27] A. Memon, “A Uniform Representation of

Hybrid Criteria for Regression Testing”,

Transactions on Software Engineering (TSE),

2013.

[28] Kuhn, A.: On extracting unit tests from

interactive live programming sessions.

International Conference on Software

Engineering, pp. 1241-1244 (2013).

[29] Mihindukulasooriya, N., Rizzo, G., Troncy, R.,

Corcho, O., García-Castro, and R.: A two-fold

quality assurance approach for dynamic

knowledge bases: The 3cixty use case. CEUR

Workshop Proceedings (2016).

[30] Rashmi, N., Suma, V.: Defect Detection

Efficiency of the Combined Approach.

Advances in Intelligent Systems and Computing

249 VOLUME II, pp. 485-490 (2014).

[31] Schaefer, C.J., Do, and H.: Model-based

exploratory testing: A controlled experiment.

7th International Conference on Software

Testing, Verification and Validation

Workshops, ICSTW 2014, pp. 284-293 (2014).

[32] Ghazi, A.N., Garigapati, R.P., Petersen, K.:

Checklists to support test charter design in

exploratory testing. Lecture Notes in Business

Information Processing 283, pp. 251-258 (2017).

[33] Sviridova, T., Stakhova, D., Marikutsa, U.:

Exploratory testing: Management solution. 12th

International Conference: The Experience of

Designing and Application of CAD Systems in

Microelectronics, CADSM 2013, pp. 361 (2013).

[34] Ghazi, A.N., Petersen, K., Bjarnason, E.,

Runeson, P.: Levels of Exploration in

Exploratory Testing: From Freestyle to Fully

Scripted. IEEE Access 6, pp. 26416-26423

(2018).

[35] Raappana, P., Saukkoriipi, S., Tervonen, I.,

Mäntylä, M.V.: The Effect of Team Exploratory

Testing - Experience Report from F-Secure.

International Conference on Software Testing,

Verification and Validation Workshops, ICSTW

2016, pp. 295-304 (2016).

