
CSEIT1831100 | Received : 12 Jan 2018 | Accepted : 29 Jan 2018 | January-February-2018 [(3) 1 : 527-533]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

527

Principles of Programming : A Hypothetical Approach
 SK.Shama*1, M.Rithvik2 , D. Madhusudana Rao3, K. Mohan Phani Kumar4

*1Assistant Professor, SRK Institute of Technology, Vijayawada, Andhra Pradesh, India
2Assistant Professor, SRK Institute of Technology, Vijayawada, Andhra Pradesh, India
3Assistant Professor, SRK Institute of Technology, Vijayawada, Andhra Pradesh, India

4B.Tech 2nd year,Student, SRK Institute of Technology, Vijayawada, Andhra Pradesh, India

ABSTRACT

In this paper we are going to introduce about the evaluation of programming languages. In recent days, E-

learning is going to play a key role in the engineering education. In this scenario few subjects like Flat

,Compiler Design etc are developed in the form of VR application. So that a lay man can easily understand

typical subjects. In this paper we are going to present the concept evaluation of programming languages in 2D

view that resembles in 3D view.

Keywords : Virtual Reality (VR) application, Evaluation, 2D, 3D

I. INTRODUCTION

Computer play many important role in the society,

helping to promote communication and interaction

with the others and providing users a way to shop

play games and have to access education.

we live in a fast-moving world where almost

everything must come instantly to us. In this

computer era, we depend on the computer to help us

complete tasks, and to solve problems.

Significance of Computer programming:

Computers are used in various fields like business,

pharmacy, music, education, engineering, defense,

transportation, and cooking as they help to ease

certain tasks, provide information faster, and speed.

A language is the main medium of communicating

between the Computer systems and the most

common are the programming languages. Computer

only understands binary numbers that is 0 and 1 to

perform various operations but the languages are

developed for different types of work on a Computer.

A language consists of all the instructions to make a

request to the system for processing a task.

Principle of programming languages:

Programming is the process of coding, testing,

troubleshooting, debugging and maintaining a system.

Programming principles help you to write excellent

quality of code and maintain a good coding practice

Program Efficiency Principles

1. Readability

All developers were in a team able to

understand the code.

2. Extensibility

In the software world, we should not blame the

change requests; it’ll come at any time. So our

code is always easy to extend without breaking

existing business rules.

3. Maintainability

It’s easy to maintain by the development team

and the production support team too because

the application is loosely coupled.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 528

4. Modularity

Divide a program into reusable pieces:

functions, modules, libraries

Types of Programming Principles

1.DRY(Don’t-Repeat-Yourself)

Duplication can lead to maintenance nightmares,

poor factoring, and logical contradictions. "Every

piece of knowledge must have a single, unambiguous,

authoritative representation within a system". In

other words, a piece of logic should only be

represented once in an application.

 Duplication is the root of all software evils.

 DRY is also known as Duplication is Evil (DIE)

or Once And Only Once.

2.KISS(KeepItSimple,Stupid)

Now a days programming languages frameworks ,

and APIs have powerful means to create

sophisticated solutions for various kinds of problems.

Sometimes developers might feel tempted to write

“clever” solutions that use all these complex features.

The KISS principle states that most systems work

best if they are kept simple rather than making them

complex; therefore simplicity should be a key goal in

design and unnecessary complexity should be

avoided.

This principle can be applied to any scenario,

including many business activities, such as planning,

designing, and development.

3.YAGNI(YouAren’tGonnaNeedIt)

As developers, we'll always think a lot about the

future usability of the project and try to do some

extra features coding in a mind that “just in case we

need them” or “we will eventually need them”. Just

one word… Wrong! I’ll repeat it this way: You didn’t

need it, you don’t need it, and in most of the cases…

There are two main reasons to practice YAGNI

 You save time because you avoid writing code

that you turn out not to need.

 Your code is better because you avoid polluting

it with 'guesses' that turn out to be more or less

wrong but stick around anyway.

4.SOLID

SOLID principle supports good object-oriented

design and programming. Five of these principles are

described as SOLID: Single responsibility, Open-

closed, Liskov substitution, Interface segregation, and

Dependency inversion.

5.Composition > Inheritance

The “composition over inheritance” principle states

that objects with complex behaviors should do so by

containing instances of objects with individual

behaviors rather than inheriting a class and adding

new behaviors.Overreliance on inheritance can lead

to two major issues. First, the inheritance hierarchy

can become messy in the blink of an eye. Second,

you have less flexibility for defining special-case

behaviors, particularly when you want to implement

behavior from one inheritance branch in another

inheritance branch:

Composition is a lot cleaner to write, easier to

maintain, and allows for near-infinite flexibility as

far as what kinds of behaviors you can define. Each

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 529

individual behavior is its own class, and you create

complex behaviors by combining individual

behaviors.

6. Single Responsibility

The single responsibility principle says that every

class or module in a program should only concern

itself with providing one bit of specific functionality.

As Robert C. Martin puts it, “A class should have

only one reason to change.”

Classes and modules often start off this way, but as

you add features and new behaviors, it’s easy for

them to evolve into God classes and God modules

that take up hundreds, or even thousands, of lines of

code. At this point, you should break them up into

smaller classes and modules.

7. Separation of Concerns

The separation of concerns principle is like the single

responsibility principle but on a more abstract level.

In essence, a program should be designed so that it

has many different non-overlapping encapsulations,

and these encapsulations shouldn’t know about each

other.

A well-known example of this is the model-view-

controller (MVC) paradigm, which separates a

program into three distinct areas: the data (“model”),

the logic (“controller”), and what the end user sees

(“view”). Variations of MVC are common in today’s

most popular web frameworks.

For example, the code that handles the loading and

saving of data to a database doesn’t need to know

how to render that data on the web. The rendering

code may take input from the end user, but then

passes that input to the logic code for processing.

Each part handles itself.This results in modular code,

which makes maintenance much easier. And in the

future, if you ever need to rewrite all of the

rendering code, you can do so without worrying

about how the data gets saved or the logic gets

processed.

8.Avoid Premature Optimization

The no premature optimization principle is similar to

the YAGNI principle. The difference is that YAGNI

addresses the tendency to implement behaviors

before they’re necessary while this principle

addresses the tendency to speed up algorithms before

it’s necessary.

The problem with premature optimization is that

you can never really know where a program’s

bottlenecks will be until after the fact.

9.Refactor, Refactor, Refactor

One of the hardest truths to accept as an

inexperienced programmer is that code rarely comes

out right the first time. It may feel right when you

implement that shiny new feature, but as your

program grows in complexity, future features may be

hindered by how you wrote that early one.

Codebases are constantly evolving. It’s completely

normal to revisit, rewrite, or even redesign entire

chunks of code — and not just normal, but healthy to

do so. You know more about your project’s needs

now than when you did at the start, and you should

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 530

regularly use this newly gained knowledge to

refactor old code.

10.Clean Code > Clever Code

Speaking of clean code, leave your ego at the door

and forget about writing clever code. You know

what I’m talking about: the kind of code that looks

more like a riddle than a solution and exists solely to

show off how smart you are. The truth is, nobody

really cares.

One example of clever code is packing as much logic

into one line as possible. Another example is

exploiting a language’s intricacies to write strange

but functional statements. Anything that might cause

someone to say “Wait, what?” when poring over your

code

II. METHODS AND MATERIAL

The application of learning the principles starts with

the evolution of programming languages is designed

with the help of a tool called construct2d

Installing Construct 2

If you haven't already, grab a copy of the latest

release of Construct 2.The Construct 2 editor is for

Windows only, but the games you make can run

anywhere, such as Mac, Linux or iPad. Construct 2

can also be installed on limited user accounts. It's also

portable,

Getting started

Now you're set up, launch Construct 2. Click

the File button, and select New.

You will see the 'Template or Example' dialog box.

This shows a list of examples and templates that you

can investigate at your leisure. For now, just click on

'Open' at the bottom of the box to create a blank,

empty new project. Construct 2 will keep the entire

project in a single .capx file for us. You should now

be looking at an empty layout - the design view

where you create and position objects.

Think of a layout like a game level or menu screen.

In other tools, this might have been called

a room, scene or frame.

Inserting objects

1) Tiled Background

The first thing we want is a repeating background

tile. The Tiled Backgroundobject can do this for us.

First, here's your background texture - right click it

and save it to your computer somewhere:

Now, double click a space in the layout to insert a

new object. (Later, if it's full, you can also right-click

and select Insert new object.) Once the Insert new

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 531

objectdialog appears, double click the Tiled

Background object to insert it.

III. RESULTS AND DISCUSSION

This is a sort of E-Learning methodology where we

compare evolution of programming languages with

the evolution of vehicles.

This type of comparison helps for a lay man to

understand the concept of programming.

The below screen shot explains about the evolution of

vehicles.

The application starts with the above text evolution

of programming languages whenever the user clicks

on the evolution of programming languages a wheel

comes first.

When the user click on the wheel the first language

that is evolved is displayed and thereby the user can

understand the characteristics of first language

And the below screen shot explains the second

generation of programming language by cliking the

arrow 2nd generation of wheel that is cycle is

displayed thus we can understand 2nd generation of

programmming language

https://www.scirra.com/images/articles/insertobject.png
https://www.scirra.com/images/articles/insertobject.png

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 532

The user by clicking the cycle 2nd generation

programming language is evolved that is the C

prgramming language.

The user using this application can easily identify the

programming languages evolution and characteristics

easily

IV. CONCLUSION

This paper is a base to evaluate new era of E-

Learning methodologies. The imagination of the user

is coming in the form of technology in recent days in

3 dimensional forms called virtual reality.

By applying the same code by using the virtual

reality applications will be a much better approach

for the understanding of the student.

V. REFERENCES

[1]. Construct 2 tutorial

[2]. Principles of Programming Languages- Matteo

Pradella Five Principles for Programming

Languages for Learners By Mark Guzdial

VI. BIBILOGRAPHY

SK SHAMA

 M.Tech. (Master of Technology) in CSE with

9.3(cgpa) from Acharya Nagarjuna University of

technology, in 2014.

 B.Tech. (Bachelor of Technology) in CSE with

76.0% from Vasireddy Venkatadri Institute of

Technology College affiliated to Jawaharlal

Nehru Technological University,

Kakinada (JNTU Kakinada) in 2012.

 Intermediate, in Mathematics, Physics,

Chemistry (M.P.C) with an aggregate of 94% in

Sri Chaitanya Junior college Guntur in 2008.

 S.S.C. with an aggregate of 93% in Z.P.H

School in 2006.

 Six months worked as Assistant Professor in

St.Mary&’s Women’s Engineering College.

 Worked as Assistant Professor in Information

Technology Dept. at, RVR&JCCE Guntur,

Andhra Pradesh since from 2015 to July 2017.

 Currently working as Assistant professor in

Computer Science and Engineering

Department at SRK Institutional Technology

Vijayawada, from July 2017 to till date.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 533

M.RITHVIK

 Gold medalist in M .Tech in IT Department.

 Have presented a PAPER ON E-LEARNING

METHODOLOGIES IN ASAR CONFERENCE

that makes or represents whole school in a rural

village HADDUBANGI, SRIKAKULAM

DISTRICT to attain an International Status.

 “A STUDENT’s Vision is a teacher’s mission is

his quote” that makes him to succeed a class in

his teaching.

D.MADHUSUDANA RAO

 He is an Entrepreneurial self-starter and a

strong communicator.

 Fast learner and innovator.

 Active and enthusiastic worker.

 Can work as a team as well as individually.

 Ability to deal with people diplomatically.

 Love to learn new things.

K.MOHAN PHANI KUMAR

 One of the finest student in the class who has

an enthusiasm to learn new things from the

faculty and implement them in life.

 Good Active listener in the class

 Regular student to college

 Realized himself when he commits a mistake.

 Enthusiasm in seeking knowledge towards the

new discoveries and innovations

