
CSEIT1831152 | Received : 15 Jan 2018 | Accepted : 03 Feb 2018 | January-February-2018 [(3) 1 : 687-696]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

687

Enhancing Security in RSA Cryptosystem Using Burrows-

Wheeler Transformation and Run Length Encoding
A. Devi*1, K. Mani2

*1Department of Computer Science, Bangalore University/KCMS College, Bangalore, Karnataka State, India
2Department of Computer Science, BharathidasanUniversity/NMC, Thiruchirapalli, Tamil Nadu State, India

ABSTRACT

While transmitting the plaintext, to speed up the transmission and eliminating redundancy, it is necessary to

compress the text. As the original form of plaintext is altered when compression is used, the eavesdropper may

not easily be cracked the correct plaintext which produces first level of security. Once the compression has

been done, encoding is performed to form the different format so that fewer bits will be used to represent the

original plaintext thereby size of the original text is reduced which produces the second level of security. For

that the Burrows-Wheeler Transform lossless compression technique is used in this paper to transform the

plaintext and the transformation permutes the order of characters. To reduce the redundancy and to increase

the efficiency of algorithm, move-to-front transformation is performed in BWT. Further, the transformed code

is again compressed using run length encoding and then it is encrypted using RSA public-key algorithm in

which block size is determined dynamically in this paper. The experimental results clearly show that the

increasing of encryption and decryption time and enhancing the security of RSA.

Keywords: BWT, Move-to-Front, Run-Length Encoding, RSA.

I. INTRODUCTION

Encryption ensures security to access confidential

data by an authorized recipient and avoid accessing

the data from third party. Encryption is used to

protect data when transmitting the data across

networks against eavesdropping of network traffic by

unauthorized users [12]. It is also used to protect

sensitive information by encoding and transforming

the information into an unreadable ciphertext and

the ciphertext may be decrypted into a readable

form using key. Secret-key and public-key

cryptography[13] are the two types of cryptosystems

in which secret-key cryptography uses the same key

for both encryption and decryption whereas in

public-key cryptography, secret-key and public-key

is used by each user. The public-key is used for

encryption and the secret-key is used for decryption.

The most popular public-key algorithm is RSA

public-key cryptosystem. The design of a robust

encryption algorithm in cryptanalysis is used to find

and correct any weaknesses [11]. Encryption

provides only security but not increasing the

transmission speed [9]. To increase the speed, the

data compression technique is efficient to remove the

redundant character strings in a file in which the

compressed file has uniform distribution of

characters and it provides shorter ciphertext. It also

reduces the time to encrypt and decrypt the message.

There are three types of compression models

available namely static, semi-static and adaptive.

Static model does not depend on the data which is

being compressed and it is a fixed model known by

compressor and decompressor[7]. Semi-static model

is constructed from the data to be compressed and it

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 688

is also a fixed model. An adaptive model is a function

of previously compressed part of the data. The

Burrows-Wheeler transformation [8] developed by

Michael Burrows and David Wheeler in 1983, also

called as block sorting and it is based on a

permutation of the input sequence. Compression and

indexing are the two important applications in BWT.

In [10] BWT, first the entire sequence is to be coded.

For that the original sequence must be cyclically

shifted from right to left and arranged in the form of

lexicographic order. Then, the sequence is converted

into binary and Run-Length Encoding (RLE) is

applied to increase the security level in RSA

algorithm. The compressed code is applied for RSA

public-key algorithm to encrypt the code.

The rest of the paper is organized as follows.

Background and related work is discussed in section

2. Section 3 presents the proposed methodology in

BWT with Move To Front (mtf). An example for

proposed methodology is illustrated in section 4.

Experimental results are discussed in section 5.

Finally, section 6 ends with conclusion.

II. BACKGROUND AND RELATED WORK

Data Compression Methodologies for Lossless Data

and Comparison between Algorithms presented by

S.Porwal, Y.Chaudhary, J.Joshi, M. Jain[1]. They

compared the performance of Huffman and

Arithmetic encoding. After comparison of two

techniques they concluded that the compression

ratio for arithmetic encoding is better than the

Huffman encoding and also found that the channel

bandwidth and time is reduced much better than

Huffman encoding. But the compression speed is

very less in arithmetic encoding than the Huffman

coding. U.Khurana and A.Koul[2] provides Text

Compression And Superfast searching and they

proved that it is an efficient technique providing

high compression ratios and faster search through

the text. S.Kaur and V.S.Verma[3] implemented a

Design and Implementation of LZW Data

Compression Algorithm. The author has

implemented a finite state machine by using LZW

data compression algorithm and he proved that text

data is effectively compressed. A Data Compression

using Huffman based LZW Encoding Technique is

presented by Md.RubaiyatHasan[4] for transmitting a

digital image from a digital data source to a digital

data receiver. The author has proved that it provides

better transmission speed and saves time.

Rajan.S.Jamgekar et.al[5] implemented a File

Encryption and Decryption Using Secure RSA. It

shows that MREA algorithm is used to encrypt files

and transmit encrypted files to other end where it is

decrypted. But it works for smaller file size whereas

it takes more time for larger file size. In [6], Monisha

Sharma et.al described about a novel Approach of

Image Encryption and Decryption by using partition

and Scanning Pattern. The author has proposed a

lossless encryption of image and also gives access to

variable lengths of the encryption keys.

III. PROPOSED METHODOLOGY

The proposed methodology consists of three phases.

In phase 1, the proposed mtf-BWT is used in

performing the compression of plaintext. RLE is used

in phase 2 for further compression of compressed

text obtained in phase 1. Then, the decimal form of

binary encoded compressed form of plaintext is

encrypted using dynamically generated block size of

RSA in phase 3.

3.1 Proposed MTF-BWT

This phase consist of three steps viz., Shifting of

plaintext characters towards left circularly, arrange

them in lexicographic order and formation of move

to first(mtf) .

3.1.1 Shifting Of Plaintext Characters Towards Left

Let M be a plaintext, and mi M, i=1,2,3,…,n where n

denotes the total number characters in M(length of

M). Suppose there are totally d distinct characters

denoted as m1,m2,..,md with m1≠m2≠…≠md in M and

there are n1,n2,…,nd times distinct characters occur

respectively. Then M=

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 689

∑

Fill mi M in tabular form and shift one position

towards left circularly as shown in Table 1.

Table 1. ORIGINAL MESSAGE mi<<<1 , i-1,2,…,n

0 m1 m2 m3 … mn-1 mn

1 m2 m3 m4 … mn m1

2 m3 m4 m5 … m1 m2

… … … … … … …

n-2 mn-1 mn-2 mn-3 … mn-1 mn-2

n-1 mn mn-1 mn-2 … m2 m1

It is the original BWT which is modified as right

shift circularly shown in Table 2.

Table 2. SHIFTING mi>>>1

0 m1 m2 m3 … mn-1 mn

1 mn m1 m2 … mn-2 mn-1

2 mn-1 mn-2 m1 … mn-3 mn-2

… … … … … … …

n-2 m3 m4 m5 … m1 m2

n-1 m2 m3 m4 … mn m1

Table 2 shows the message mi M is shifted one

position towards right circularly. In row 0 of Table 2

consists of original M. Shift one position towards

right circularly all the elements in 0th row so that

row 1 is obtained. In general (n-1)th row is obtained

by shifting each element of (n-2)th row one position

towards circular right. The steps involved in

algorithm1 show that the order of sequence will be

different from original BWT.

Algorithm 1: Circular shifting of plaintext characters

towards right

 String Function shift_right(M)

 begin{Main}

1. L←length(M)

2. for i ←1 to L

 begin

2.1 i←1

2.2 while(i ≤ L) then

 begin

2.3 if(i==L) then

 M[1] ←M1[i]

 //M1[i] ←M[1]

 else

 M[i+1] ←M1[i];i+1

 M1[i] ←M[i+1];i←i+1

 end {if}

2.4 end {while}

2.5 print(M)

2.6 M1←M

3. end {for i}

4. return M1

 end {main}

3.1.2 Arrange Them In Lexicographic Order

After forming Table 2, sort the Table 2 in

lexicographical order. For that first identify the

number of blank spaces bk in M. If the number of

blank space occurs in M is k, then the number of

words in M is k+1. Let the blank spaces are denoted

as b1,b2,…,bk and the blank spaces bi

position pi, i=1,2,…,k. After that identify the

distinct alphabets where d≤ n from M which is

shown in algorithm 2 and sort them in ascending

order.

Algorithm 2: Finding the distinct characters from M

int position function distinct(M)

begin

1. L←length(M)

2. U←sort(unique(M))

3. j←1; k←1

4. for i in 1 to length(L_U)

 begin

4.1 for j in 1 to length(M)

 begin

 4.2 if L_U[i]=M[j]

 pos←j

 posa[k]←pos

 k←k+1

 end {if}

4.3 end {for j}

5. end {for i}

6. return posa

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 690

 end {main}

Let the alphabet al occurs at position lk, k=1, 2,…,d

with pi≠lk. Further, a1<a2<…<ad. Now start with b1 at

p1, put all the characters that appear after b1, proceed

up to the last character before b1 occurs at position

p1-1and fill them in 0th row of Table 3.

Table 3. Lexicographical Order

Similarly, start with b1, proceed up to the position p2-1,

fill the corresponding characters in 1st row. Repeat the

said process for other blank spaces too and the process

in terminated when the last bk is processed. Once all bk

are processed now start with al and repeat the said

process till ad are processed. It is shown in Table 3 and

it is shown in algorithm 3.

Algorithm3: Forming the source character in

Lexicographical Order

String Lexi Function Lexicographic(M)

begin {main}

1. posa←distinct(M)

2. l←length(posa)

3. k←1

4. for i in 1 to l

begin

4.1 st←posa[i]+1

4.2 st←posa[i]+1

end{for i}

5. if st ≤ end

 k←k+1

 lex[k] ←M[st]

 st←st+1

 end {if}

6. for j=1 to posa[i]-1

 begin

 6.1 k←k+1

 6.2 lex[k] ←M[j]

 end{for j}

 7. Loop←1

 8. for m←1 to l

 begin

 8.1 x[Loop][m] ←lex[m]

 8.2 Loop←Loop+1

 end {for m]

 9. return x[Loop][m]

end {main}

The main difference between the existing and

proposed methodology is that in the proposed

methodology, first sequence is always considered for

mtf whereas in the existing methodology the last

sequence is considered.

Form a table with order nr x nd, Where nr ≥ nd and

nr is determined on the basis of first sequence of

lexicographical order. The source alphabet is

{nb,m1,m2,…,md}. To fill the value in row 1, the top

0 b1 mp1+1 mp1+2 … mn-1 mn m1 m2 … m p1-1

1 b2 mp2 mp2+1 … mn-1 mn m1 m2 … m p2-1

… … …. … … …. … … … … …

pn-1 bn mpn mpn+1 … mn-1 mn m1 m2 … m pn-1

Pn mp2 mp2+1 … mn-1 mn m1 m2 … m p2-1 b2

… … …. … … …. … … … … …

pi-1 bi-1 mpi-1 mpi … mn-1 mn m1 m2 … m p-1-1

pi-1+1 mpi-1 mpi … mn-1 mn m1 m2 … mp-1-1 bi-1

… … … … … … … … … … …

pi bi mbi mbi+1 … mn-1 mn m1 m2 … m p-1

pi+1 mbi mbi+1 … mn-1 mn m1 m2 … m p-1 Bi

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 691

position of (0, 0) must be filled by b1 (the first blank

space) and the succeeding columns in rows r1 are

filled with other alphabets from source alphabet.

Search the position of first alphabet in the previous

row and move the element from that position to the

top position, i.e., (1, 0) and fill the rest of the

alphabet in the succeeding position. The process is

repeated until all the n distinct elements are filled

from the source sequence. In order to determine the

final sequence, the elements must be considered

from the moving position of previous row to the top

position in the same row. Now, the final sequence is

represented as n1, n2, n3,…,nn. It is noted that the

number of characters in final sequence stored as

same. It is shown in algorithm 4.

Algorithm4: For finding the move to front

String FS move-to-front(mtf)

begin{main]

 1. ds←sort(unique(M))

 2. dsp←unique-pos(ds);

3. p←0; j←0; en←0;

4. for k ← 0 to length(fs)-1

 begin

4.1 if k=dsp[j] and k<length(dsp) then

 begin

 enc[p] ←en

 j←j+1; en←en+1;

 else

 enc[p] ←0; p←p+1

 end {if}

 end{for k}

3. return enc

end {main}

After finding the first sequence, it is converted into

binary which is then used in RLE.

3.2 Run Length Encoding (RLE)

RLE is a technique used to reduce the size of

repeating string of characters. The repeating string is

called run. It replaces sequences of the same data

values within a file by a count number and a single

value. For example, the bit stream ,

11111111111111100000000000000000001111 is

compressed using RLE as 15119041. In the proposed

method, mtf based BWT and RLE are used before

encryption. For performing encryption and

decryption, the standard RSA is used and the

proposed methodology is now termed as RLE-

EBWT-RSA.

3.3 RLE-EBWT-RSA

In original RSA, the block size taken is either 2048 or

4096 bits and it is always constant. In the modified

RSA block size is determined on the basis of modulus

m, m= p×q and it depends on the size of p and q

where p and q are prime numbers. As p and q are

accepted as input, the block size is based on only m

and the block size denoted as BS is unpredictable

which produces the first level of security. Further,

original P is completely changed using the proposed

methodology before it is encrypted the eavesdropper

may not predict the correct P from C which increases

second level of security. The steps involved in

modified RSA algorithm are shown in algorithm 5.

Algorithm 5: Modified RSA algorithm based on mtf

based BWT

int IP function modified_RSA(M)

begin {main}

// Te first 6 steps for key generation part, step 7 is

//generating IP after using the proposed

methodology. 8th step is performed by the sender and

9th is performed by receiver

1. Generate two large distinct primes p, and q,

 most probably both are of same size

2. Compute n ← p×q; ф(n)=(p-1)×(q-1)

3. convert n into binary nb ← (n)2

4. Compute BS ← length(nb) //BS-block size

5. Select the random integer e, 1 < e < ф(n))

 such that gcd(e, ф(n))=1

6. Find d, d×e ≡ (1 mod ф(n))

7. IP ← RLE(BWT_mtfM))

8. i←BS

8.1 repeat

 begin

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 692

 Locate i digits from IP, say IPi

 To encrypt, compute Ci ← IPie mod n,

(1< IPi < n)

 To decrypt, compute IPi ← Cid mod n

 return IPi

 i← i+BS

 end {repeat}

 8.2 until (i≤length(IP))

 end{main}

After getting IP by the receiver the steps from 3.1 to

3.3 are reversed, the receiver gets the original

plaintext.

IV. PROPOSED METHODOLOGY – AN

EXAMPLE

In order to understand the relevance of the work, let

M is “KANNAN BABA”. Now d=5 with m1=’K’, m2=’A’,

m3=’N’, m4=” “, m5=”B” and n1=1, n2=4,n3=4,n4=1, n5=2.

Then sorted order of mi, i=1,2,..,5 is {blank, A, B, K,

N}. Since n==11, form the original BWT matrix of

order 11×10. First, fill M in 0th row then shift one

position towards left circularly. The process is repeated

for the last character “A” in M. It is shown Table 4.

Table 4. Original Bwt

0 K A N N A N ᶲ B A B A

1 A N N A N ᶲ B A B A K

2 N N A N ᶲ B A B A K A

3 N A N ᶲ B A B A K A N

4 A N ᶲ B A B A K A N N

5 N ᶲ B A B A K A N N A

6 ᶲ B A B A K A N N A N

7 B A B A K A N N A N ᶲ

8 A B A K A N N A N ᶲ B

9 B A K A N N A N ᶲ B A

10 A K A N N A N ᶲ B A B

After forming Table 4, again fill M in 0th row of Table

5. Start with first alphabet in sorted list i.e., A in row 0,

fill the next row of table 5 shifting towards circularly

right row 0 so that row 1 is obtained. In row 1, now

the next alphabet in sorted order is B. Start with B fills

all the characters which occur in row 1 by shifting

towards right circularly. The process is repeated until

the last character “N” is processed. The resultant is

shown in Table 5.

Table 5.Permutation For Modified Bwt

0 K A N N A N ᶲ B A B A

1 A K A N N A N ᶲ B A B

2 B A K A N N A N ᶲ B A

3 A B A K A N N A N ᶲ B

4 B A B A K A N N A N ᶲ

5 ᶲ B A B A K A N N A N

6 N ᶲ B A B A K A N N A

7 A N ᶲ B A B A K A N N

8 N A N ᶲ B A B A K A N

9 N N A N ᶲ B A B A K A

10 A N N A N ᶲ B A B A K

The second step is to sort the sequence in the

lexicographical order shown in table 6. Table 6, consists

of the cyclically shifted sequences which are in the

lexicographical order.

Table 6. Lexicographic Order For Modified Bwt

0 ᶲ B A B A K A N N A N

1 A B A K A N N A N ᶲ B

2 A K A N N A N ᶲ B A B

3 A N ᶲ B A B A K A N N

4 A N N A N ᶲ B A B A K

5 B A B A K A N N A N ᶲ

6 B A K A N N A N ᶲ B A

7 K A N N A N ᶲ B A B A

8 N ᶲ B A B A K A N N A

9 N A N ᶲ B A B A K A N

10 N N A N ᶲ B A B A K A

Table 7 shows the first and last sequence of the

sorted elements.

Table 7. First And Last Sequence Of Elements

Fi ᶲ A A A A B B K N N N

Li N B B N K ᶲ A A A N A

i- Element of First and Last sequence

Further, the sequence is applied to mtf coding

scheme to encode the sequence. For that consider the

first sequence F= “ᶲAAAABBKNNN”. Normally, the

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 693

last sequence L is considered for mtf. But, in the

proposed methodology, the first sequence F is

considered so that the number of moving position of

the each element to the 0th position is very less. This

is because F gets the repeated element several times.

The source alphabet A based on F is { ᶲ,A,B,K,N }. In

this coding scheme, the first element is blank space

which is already in the top position and there is no

change in the position. Thus, 0 is placed in the

sequence. The second element is A from the

sequence moving from first position into the top of

the list. This is encoded as 1.The next subsequent

three elements from sequence are A and hence it is

not necessary to encode the those elements instead

and three zeros in the sequence. The next element is

B moving towards the top of the list from second

position and it is encoded as 2. Again B is repeated

and it is considered as zero. After B, the element K is

moving towards the top of the list and it is encoded

as 3.The last three elements from the sequence is N

which is moving towards the top of the list from the

position four and it is encoded as 4.The two elements

out of three are zeros. The final sequence from this

coding scheme is 01000203400. The mtf for first

sequence and last sequence are shown in Table 8 and

Table 9 respectively.

Table 8. Mtf Coding Scheme For First Sequence

NO. I II III IV

 0 ᶲ A B K

1 A ᶲ A B

2 B B ᶲ A

3 K K K ᶲ

4 N N N N

Table 9. Move To Front Coding Scheme For Last

Sequence

NO. I II III IV V VI VII VIII IX

0 ᶲ N B N K ᶲ A N A

1 A ᶲ N B N K ᶲ A N

2 B A ᶲ ᶲ B N K ᶲ ᶲ

3 K B A A ᶲ B N K K

4 N K K K A A B B B

The first sequence is “ᶲAAAABBKNNN“. Once the

mtf for the first sequence is 01000203400. After

applying RLE, it is compressed as 0130203420. It is

treated as IP plaintext for encryption. Similarly, the

last sequence is “NBBNKᶲAAANA” and its mtf is

43014340031 and its compressed form is 4301433201.

It is observed that the number of digits are more in last

sequence than the number digits in first sequence.

To perform encryption and decryption using modified

RSA, let p=50053 and q=50069. Then n=2506103657,

ф(n)= 2506003536, (n)2=1001 0101 0110 0000 0001

1011 0110 1001. Thus, block size BS=32 bits. Let e=

56989. Using Extended Euclidean Algorithm d is

computed as 2472671653. Let M=”KANNAN BABA”.

Using the proposed methodology IP1(M) =0130203420

where the number of bits for IP=27. As 27< 32, BS=1.

To encrypt C1 =(130203420)56989 mod 2506103657

=638232499 and to decrypt IP1=(638232499)2472671653

mod 2506103657=130203420. After obtaining IP, the

reverse process, i.e., decompression and decoding are

performed to get M=”KANNAN BABA”.

V. RESULTS AND DISCUSSIONS

The proposed methodology is implemented in VC++

where in which different size of plaintext is taken.

The security level produced by original RSA, BWT-

RSA, RLE-BWT-RSA and RLE-EBWT-RSA are

measured using All Block Cipher (ABC) Universal

Hackman tool. Also the time taken for encryption and

decryption for different file sizes are noted without

using modified BWT and after using modified BWT

and they are shown in Table 10 and Table 11

respectively and their corresponding graphical

representation are shown in Figure 1, Figure 2, Figure

3 and Figure 4 respectively.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 694

Figure 1. Encryption Time Before Modified BWT

Figure 2. Decryption Time Before Modified BWT

The encryption time and decryption time for RSA

algorithm after using modified BWT is analyzed for

various sizes of plaintext. The encryption time and

decryption time of 1MB file size is 3109 and

3133.The encryption and decryption time for 16 MB

is 48957 and 48925. After applying BWT encoding

with RSA algorithm, the encryption and the

decryption time for 1MB and 16 MB are 2699,42386

and 2659,42422. After applying the compression

using RLE-BWT with RSA, the encryption and

decryption time varies from 39155 to 39127 for

16MB. For RLE with enhanced BWT-RSA, the

encryption time and the decryption time lies

between 34652 and 34647 of 16MB file size of

plaintext as shown in table 11. The experimental

results clearly show that RLE-EBWT-RSA

outperforms than the other counterpart.

 Figure 3. Encryption Time After Modified BWT

with mtf

 Figure 4. Decryption Time After Modified BWT

with mtf

Table 10. Encryption Time And Decryption Time Before Using Modified Bwt

Method

Encryption Time(ms)

File size

Decryption Time(ms)

File size

1MB 2MB 4MB 8MB 16MB 1MB 2MB 4MB 8MB 16MB

RSA 3109 6156 12275 24527 48952 3123 6180 12243 24447 48915

BWT-RSA 2699 5324 10668 21241 42381 2649 5376 10601 21237 42412

RLE-BWT-RSA 2521 4979 9825 19574 39141 2454 4920 9874 19597 39122

RLE-EBWT-RSA 2173 4328 8714 17291 34638 2220 4409 8652 17327 34642

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 694

Table 11. Encryption Time And Decryption Time After Using Modified Bwt

Method

Encryption Time(ms)

File Size

Decryption Time(ms)

File Size

1MB 2MB 4MB 8MB 16MB 1MB 2MB 4MB 8MB 16MB

RSA 3109 6168 12277 24528 48957 3133 6190 12247 24451 48925

BWT-RSA 2699 5336 10670 21242 42386 2659 5386 10605 21241 42422

RLE-BWT-

RSA
2531 4981 9829 19586 39155 2466 4924 9879 19600 39127

RLE-EBWT-

RSA
2183 4330 8718 17303 34652 2232 4413 8657 17330 34647

The compression ratios are shown in Table 12 and the corresponding graphical representation is shown in

Figure 5.

Table 12. Compression Ratio

Method

Compression Ratio(%)

File size

1MB 2MB 4MB 8MB 16MB

RSA 100 100 100 100 100

BWT-RSA 100 100 100 100 100

RLE-BWT-RSA 84 88 88 88 86

RLE-EBWT-RSA 83 87 87 87 85

Figure 5. Compression Ratio

Table 13 shows the security level for various existing

and proposed algorithms. Because of run length

encoding is applied after encoding using BWT and

the first sequence is considered for mtf in BWT

rather than last sequence ,the security level of RLE-

EBWT-RSA is increased upto 93% for 16MB

compared to RLE-BWT-RSA with 90%. The various

levels of security is shown in figure 6.

Figure 6. Security Level

Table 13. Security Level

Method

Security Level(%)

File Size

1MB 2MB 4MB 8MB 16MB

 RSA 84 85 85 82 78

BWT-RSA 95 93 90 89 90

RLE-BWT-RSA 95 94 94 91 90

RLE-EBWT-RSA 96 96 95 94 93

VI. CONCLUSION

A novel mtf based BWT methodology has been

proposed to generate the binary code for the

plaintext M and it will produce shorter code for M

when it is compared with existing mtf based BWT.

The shorter code has further been compressed using

RLE. As compression is performed two times for M,

the size of M is drastically reduced which results in

increasing the speed of transmitting the plaintext.

Also the original form of M has been completely

changed using the proposed methodology, the

eavesdropper may not predict the correct M from C

which increases the security of any cryptographic

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 696

algorithms. Further, the block size is determined

dynamically only on the basis of modulus m, which

enhances the security as opposed to block size is

fixed like 2048 or 4098 bits normally used in well

known standard RSA public-key cryptosystems. The

experimental results strengthen the increasing the

speed and enhancing the security level using the

proposed methodology.

VII. REFERENCES

[1]. S.Porwal, Y.Chaudhary, J.Joshi, M. Jain, "Data

Compression Methodologies for Lossless Data

and Comparison between Algorithms",

International Journal of Engineering Science

and Innovative Technology (IJESIT) ,Vol.2,

Issue 2, March 2013.

[2]. U.Khurana and A.Koul, "Text Compression and

Superfast Searching", Thapar Institute Of

Engineering and Technology, Patiala, Punjab,

India-147004.

[3]. S.Kaur and V.S.Verma, "Design and

Implementation of LZW Data Compression

Algorithm", International Journal of

Information Sciences and Techniques (IJIST)

Vol.2, No.4, July 2012.

[4]. Md.RubaiyatHasan, "Data Compression using

Huffman based LZW Encoding Technique",

International Journal of Scientific &

Engineering Research Vol.2, Issue 11,

November-2011.

[5]. Rajan.S.Jamgekar, Geeta Shantanu Joshi, "File

Encryption and Decryption Using Secure RSA",

International Journal of Emerging Science and

Engineering (IJESE), Vol-1, Issue-4, February

2013.

[6]. Monisha Sharma, Chandrashekhar

Kamargaonkar, Amit Gupta, "A Novel

Approach of Image Encryption and Decryption

by using partition and Scanning Pattern",

International Journal of Engineering Research

& Technology (IJERT), Vol. 1, Issue 7,

September- 2012.

[7]. https://en.wikipedia.org/wiki/Data_compressio

n

[8]. D. Adjeroh, T. Bell, and A. Mukherjee, "The

Burrows-Wheeler Transform: Data

Compression, Suffix Arrays, and Pattern

Matching", Springer, 1 edition, July 2008.

[9]. K.Mani and A.Devi, "Enhancing Security in

Cryptographic Algorithms Based on IENCCRS

Scheme", IJAER,Vol.10, No.82, 2015.

[10]. J.Seward,"On the performance of bwt sorting

algorithms", In Data Compression Conference,

pages 173–182, IEEE Computer Society, 2000.

[11]. https://en.wikipedia.org/wiki/Elgamal.

[12]. William Stallings ,"Cryptography and

Network Security, Principles and Practices",

Fourth Edition , November, 2005.

[13]. Hans Delfs and Helmut Knebl, "Introduction

to Cryptography Principles and

Applications", Springer-Verlag, Berlin,

Heidelberg, 2001.

