A Perlustration on Eloquence of Soft Computing Dexterity in Yield Production

K. P. Malarkodi, M.Jenifer, Dr. S. Saraswathi

Assistant Professor, Department of CSA & SS Sri Krishna Art and Science College Kuniamuthur, Coimbatore,

Tamilnadu, India

ABSTRACT

In India, harvest developing province bearing many troubles in enhancing congregation with accessible normal wealth. Soft computing techniques shows infinite competence in solving tribulations resembling crop medley, crop scheduling, irrigation speculation, stream possessions board, vegetable production, water source board etc has been descant in the accessible paper. In 1st partition federation of perceive has been completed on soft computing and its utensils. In 2nd section speckled techniques which have been used in instructive crop commencement based on soft computing with individuality and demerits are discussed. appraisal portion is in arrangement after responsibility text analysis on in close proximity deed on soft computing which is vital in bighearted troubles and consequent quandary solving technique which gives a improved get nearer within achieve of produce contraption and perfectionism crop growing.

Keywords : Soft Computing, Technique, Resource Supervision, Meticulousness Agriculture, Yield Assembly.

I. INTRODUCTION

India is an farming homeland and superior ingredient of its populace is engaged in agricultural works and outcomes source of revenue creature their personage establishment of income. In authenticity, on introverted part farming provides supplies fortification to the populace and on supplementary contribute it provides unprocessed equipment to agro-based industries. India faces many challenges of enhancing edifice with accessible natural assets.

ICT plays considerable part in addressing these challenges [1] .managing of soft computing techniques in soil culture saves personage endeavor .pasture education plays a essential part in lucrative corollary of farming which in turns achieve in scantiness attenuation [2].Soft computing is a situate of "fairly accurate" computing techniques which are able to version discover very obscure predicament[3] The main apparatus of soft computing are fuzzy logic, artificial neural network, genetic algorithm have made known gargantuan competence in solving predicament in farming proposal such as crop collection, crop development, irrigation arrangement, assets water management, vegetable manufacture, water reserve management [4]etc.

Rather than specific. In distinction to yes/no or 0/1 binary logic (crisp), FL provides a set of membership values inclusively between 0 and 1 to indicate the degree of truth (fuzzy)[3]

A.Fuzzy inference

Fuzzy conjecture system is a systematic tool permitting replication of a system without a detailed geometric portrayal. There are two frequent types of conjecture method, counting Mamdani and Sugeno. Mamdani is the most frequently seen fuzzy method that basically contains under stages:

- 1. Fuzzification
- 2. Application of the rule base to fuzzy data
- 3. Inference of fuzzy results
- 4. Defuzzification

In the stage of fuzzification, real values are transformed to fuzzy form using membership functions. Rule bases are sets of IF-THEN linguistic rules, which describe a logical evolution of system according to the linguistic values of its principal characters. Combination process of input memberships is used to inference from the IF-part to the THEN-part of one rule.

This process is usually done by employing AND, OR or compensatory operators. To aggregate THEN-parts of several rules, several aggregation methods are available. However, Max and Sum are mostly utilized in fuzzy inferences systems. Obtained final fuzzy values from aggregation process transformed are to real data in defuzzification stage.Defuzzification may be done using several methods such as center of gravity, center of maximum, center of area, mean of maximum and so on .Development of a rule based fuzzy model established upon experts' knowledge is down in several times and simulated input data compared whit experts' view points.

A.Fuzzy Logic

FL is a form of multi-valued logic consequent from fuzzy set speculation to deal with interpretation that is estimated,

Figure 1: The scheme for the development of fuzzy inference model based on experts Knowledge

B. Artificial Neural Network

ANN is considered as simplified model of human brain system. It is a highly parallel distributed processor made up of simple processing units which has a property for storing experiential knowledge and making it available for future use. It has the capability to learn new associations, new patterns and new dependencies. ANN represent the new generation of information processing networks.

ANN has three layers named as input, hidden and output layers as shown in fig 2.Each neuron in the network processes the incoming inputs into an output. The output is then connected to other neurons. The information enters the network at the input layer. All layers of the network process these neurons through the network until they reach the output layer[1]. The inputs of a neuron are:(X1,X2,X3.....Xn,w1, w2,wn), where Xi represents an ith input, wi represents the ith connection weight and n represents the number of the neuron's input connections. Each node produces an output value O. The process of transformation of any input is described by two functions as

$$I=\sum wiXi(i=1 \text{ to } n) A=1/(1+e^{-1})$$

Where, I represents the standard form of the integration of propagation function that performs a weighted sum for the inputs, and A represents the standard form of the activation function at computes the neuron's output[1].

C. Genetic Algorithm

Genetic algorithms (GAs) are benefits arising from of of Stochastic the production а set optimization techniques that mimic the Darwinian evolution by modeling the natural selection process and genetic modifications. They act on a population of individuals that evolve under the effect of three basic operations: selection, crossover and mutation. The parents with high 'fitness' survive and reproduce in order to create individual again more adapted. In the case of standard unimudal GAs, the population quickly converges toward a promising zone of the search Genetic algorithm (GA) optimization space

procedures belong to the family of heuristic evolutionary algorithms that mimic the natural evolutionary processes to search optimal solutions for diverse, complex and globally distributed problems. Heuristic optimization methods provide near optimal solutions by searching a global variable space. In brief, a GA consists of a population (represented as chromosome with genes as variables) of solutions that are initialized randomly and their fitness is estimated by evaluating the objective functions. In the selection process, the fittest individuals are duplicated and the weak ones are discarded [4].

Figure 2. ANN network structure

II. ANALYSIS OF VARIOUS SOFTCOMPUTING SCHEME

Author name and	Title	Method to solve	Problem	
year				
Harsimranjit Singh	Review of Fuzzy Based Expert	Fuzzy Logic	Soil preparation Seed	
Narinder Sharma	System in Agriculture		selection	
2014 [6]			Pesticide management Water	
			scheduling	
Mohammad	Optimization Crops Pattern in	Genetic algorithm	Crop planning	
Mansourifaretal	Variable Field Ownership		Crop pattern	
2013 [4]				
Animesh Biswas, Bijay	Application of fuzzy goal	Fuzzy logic	Land use planning	
Baran Pal	programming technique to			
2004 [8]	land use planning in agricultural			

Table1:	Table	for	crop	production	related	problems	and	solving	techniqu	ıes
			1	1		1		0	1	

Ehsan Houshyar et al	Sustainable and efficient	Fuzzy logic Data	Efficiency of corn production
2012 [9]	energy consumption	Envelopment	
	of corn production in	analysis(DEA)	
	Southwest Iran: Combination of		
	multi-fuzzy and DEA modeling		
Yanbo Huang et al	Development of soft computing	Soft	crop management
2010 [3]	and applications in agricultural	computing	precision agriculture
	and biological engineering	techniques	
I oila Nadarlaa ot al	Application of ANEIS to predict	ANEIS	Croin yield of wheat
2012 [10]	crop yield based on different		Grain yield of wheat
	energy inputs		
	energy input		
Alex .B.McBratney	Application of fuzzy sets in	Fuzzy system	Soil classification
et al	soil science: fuzzy logic, fuzzy		Soil mapping Land
1996 [11]	measurements and fuzzy		evaluation
	decisions		
SnehaMurmu Sujata	Application of Fuzzy logic and	Fuzzy logic	Crop mapping
Biswas 2015 [12]	Neural Network in Crop	Neural	Estimating crop water
	Classification: A Review	network	requirement
Paulo Salgado et al	Greenhouse climate hierarchical	Hierarchical	Green house climate (air
2004 [13]	fuzzy modeling	fuzz	temp. and humidity
		y modeling	
N. Sundaravall , Dr.	A Study & Survey on	Fuzzy logic	Prediction of rainfall
A.Geetha 2016 [14]	Rainfall Prediction	k-mean	and crop production
	And Production of Crops Using	Neuro fuzzy with	
	Data Mining Techniques	genetic algorithm	
Alastair J. Ward et al	Optimization of the anaerobic	Fuzzy logic	optimization of
2008 [15]	digestion of agricultural resources	Artificial neural	Anaerobic digestion
CC. YANG et al 2000	Recognition of weeds with	Fuzzy logic	Detection of weeds
[16]	image processing and their use	Image	
	with fuzzy logic for precision	processing	
	farming		
Asghar Mahmoudi	Simulation of Control System	Fuzzy logic	Temperature and humidity
et al 2016 [17]	in Environment of Mushroom	simulink	in mushroom production
	Growing Rooms using Fuzzy		
	Logic Control		

P. Maleki et al [18]	Application of fuzzy logic to	Fuzzy logic	Land suitability for wheat
	land suitability for irrigated wheat		crop
N. Tremblay et l [19]	Fuzzy logic to combine soil and	Fuzzy logic	Optimization of Nitrogen rate
	crop growth information for		
	estimating optimum N rate for		
	corn		
Kartik Ingole et al	Crop prediction and detection	Fuzzy logic	Crop detection
[20]	using fuzzy logic in matlab	Matlab	
E. FitzRodriguez et al	Yield prediction and Growth	Neural	Yield prediction
2009 [21]	Mode characteristics of	network Fuzzy	Green house climate control
	greenhouse tomatoes with neural	logic	
	networks and fuzzy logic		
Miss.Snehal	Agricultural Crop Yield	Artificial Neural	Crop vield prediction
S.Dahikar, et al 2014	Prediction Using Artificial	network	
[22]	Neural Network Approach		
L——]			
Fadzilah Siraj	Integrated Pest Management	Fuzzy logic	Pest management
Nureize Arbaiy [23]	System Using Fuzzy Expert System		
Siti Khairunniza-Bejo	Application of Artificial	Artificial neural	Prediction of crop yield
et al 2014 [24]	Neural Network in	network	
	Predicting Crop Yield: A Review		
K P. Suresh et al 2004	A fuzzy rick approach for	Fuggy logic	Crop viold Irrigation recornair
[25]	A luzzy lisk approach for	ruzzy logic	desision making
	imigation reconcistent		
	ingation reservoir system		
J.H. ssimakopoulos et	A GIS-based fuzzy classification	GIS	
al 2003 [26]	for mapping the agricultural	Fuzzy logic	Limit of N fertilizer
	soils for N-fertilizers use		
M. Azaza1 et al	Fuzzy Decoupling Control of	Fuzzy logic	Green house temp. and
2015 [27]	Greenhouse Climate		humidity control
L J			
Guifen Chen et al	Research of Irrigation Control	Neural	Saving water
2011 [28]	System Based on Fuzzy Neural	network Fuzzy	Saving water
P Lavanya Kumari	Optimum Allocation of	FMOLP	Optimum cropping pattern
$a t_{2} = 2014$ [20]	Agricultural Land to the	TWOLI	Optimum cropping pattern
ci al 2014 [27]	Vegetable Crops under p cortain		
	Drofite using Freedo		
	mult ichicative Liner		
	Inuit iobjective Linear		
	Programming		

P. A. Saudagar et al	Design of Fuzzy Logic Controller	Fuzzy logic	Controlling humidity
2012 [30]	for Humidity Control in		
	Greenhouse		
Eahim Jawad at al [21]	Analysis of Ontimum Cron	Euggy logic	Ontimum aron cultivation
Fanim Jawad et al [51]		Fuzzy logic	Optimum crop cultivation
	Cultivation Using Fuzzy		
Dattatray angaram	Fuzzy Approach Based	MOFLP	Crop planning
Regulwar et al	Management Model for irrigation		
2010 [32]	Planning		Optimal cropping pattern
Pravin Kumar et al	Efficiency measurement of	FDEA	Rank and efficiency of
2017 [33]	fertilizer manufacturing		fertilizer
	organizations using Fuzzy data		
	envelopment analysis		
	I I I I I I I I I I I I I I I I I I I		
Miss. Sarika A.	Fuzzy based approach for	Fuzzy logic	Weather advisory approach
Hajare et al 2015 [34]	weather advisory system	, ,	
, ,			
Marcel G. Schaap et al	Neural Network Analysis for	Neural network	Soil properties
1998 [35]	Hierarchical Prediction of Soil		
	Hydraulic Properties		
Dinesh K. Sharma et	Fuzzy goal programming based	Genetic algorithm	Nutrient – management
al 2009 [36]	genetic algorithm approach	5	decision making
	to nutrient	FGP	8
	management for rice crop		
	planning		
Murali Siddaiah et al	Identification of Trash Types in		Identification of trash
2009 [37]	Ginned Cotton using Neuro Fuzzy	Neural	
	Techniques	network	
	rechinques	IICTWOIK	
Moussa waongo et al	A Crop Model and Fuzzy Rule	Fuzzy logic	Optimize crop planting date
2013 [38]	Based Approach for		
	Optimizing		
	Maize Planting Dates		
5. M. Wu et al [39]	An interactive inexact-	FMOP	Water pollution control
	fuzzy approach for multi		
	objective planning of		
	water resource systems		
Dinesh K. Sharma et	Fuzzy goal programming for	FGP	Allocation of land
2] 2007 [40]	agricultural Land allocation		
	nrohlems		
	problems	1	

III. CONCLUSION

Here soft computing techniques are used in crop production. In this paper we have surveyed different problems and techniques. This survey table is very useful to understand problems and corresponding problem solving technique. All these techniques have their own advantages and disadvantages and gives a better way to improve the crop production which leads to precision agriculture [7].

IV. REFERENCES

- Shalini Ahlawat et al., "A review of fuzzy approach for green house climate control" in EMI, 2015.
- [2]. Karthiga.N et al., "Field study based on soft computing techniques" in Journal of Theoretical and Applied information Technology(JATIT),vol.38,No.1,April 2012.
- [3]. Yanbo Huang et al, "Development of soft computing and applications in agricultural and biological engineering", in ELSEVIER,vol.71, pp.107-127,2010.
- [4]. Mohammad Mansourifar et al, " Optimization Crops Pattern in Variable Field Ownership" in World Applied Sciences Journal, pp. 492-497,2013.
- [5]. Moslem SAMI et al, "Assessing the sustainability of agricultural production system using fuzzy logic" in Journal of Central European Agriculture ,vol.14 ,issue 3, pp.318-330,2013
- [6]. Harsimranjit Singh et al, "A Review of fuzzy based expert system in agriculture" in International Journal of Engineering sciences and Research Technology,vol.3,July 2014.
- [7]. M. Siva Kumar et al, "A survey on visual cryptography techniques" in International Journal of application or innovation in Engineering and management, vol.5, issue 2, February 2016.
- [8]. Animesh Biswas et al, "Application of fuzzy goal programming technique to land use

planning in agriculture system" in ELSEVIER, vol.3,pp.391-398,2005.

- [9]. Ehsan Houshyar et al., "Sustainable and efficient energy consumption of corn production in southwest Iran: Combination of fuzzy and DEA modeling" in ELSEVIER, vol.44, pp.672-681,2012.
- [10]. Leila Naderloo et al., "Application of ANFIS to predict crop yield based o Network in crop classification: A Review" in ELSEVIER, pp.1203-1210, 2015.
- [11]. Paulo Salgado and J. Boaventura Cunha, "Greenhouse climate hierarchical fuzzy modeling" in ELSEVIER, pp.613-628, 2005.