
CSEIT1831184| Received:01 Feb2018 | Accepted:11Feb2018 | January-February-2018[(3) 1 : 947-955]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue1 | ISSN : 2456-3307

947

Application Review of Automata Theory
Aparna*1, Dr. Gulshan Goyal2

*1Student, Department of CSE, Chandigarh College of Engineering and Technology, Chandigarh, India
2Assistant Professor, Department of CSE, Chandigarh College of Engineering and technology, Chandigarh, India

ABSTRACT

A formal language is described as a set of strings following a defined pattern over a given alphabet. An

automaton is a machine, which is used to process the formal languages. The field of automata theory finds

number of applications in literature. Present paper reviews few of them. The application domain considered in

present study includes compiler design, time granularity, deep packet inspection and DNA evolution. The aim

of present study is to explore the applicability of concept in described field. For this, research papers have been

reviewed to infer that the principles and concepts of automata are being used in fields as diverse as networking

to a field like biology and bio-informatics. From the review, it has been concluded that each automaton, which

is available, is a representation of a real-life scenario and they can be used to solve other problems. The review

is quite helpful for novel researchers in the field of formal languages and automata theory to understand

applicability of field in variety of applications.

Keywords: Automata, Compiler, Cellular Automata, Time Granularity, Packet Inspection.

I. INTRODUCTION

‘Automata’ is a Greek word, which means self-acting.

In automata theory, an automaton is a machine,

which does some processing by moving through a

series of states on providing some inputs and by

following some rules [8]. A simple automaton has

generally five parameters:

Set of states (Q): This is a finite set, which represents

the possible states in which an automaton can be at a

particular time.

Input alphabet (∑): This set contains the input

symbols using which the strings that can be

processed by the automaton.

Initial state (qo): This is an element of set Q and

represents the state from which string processing

starts.

Set of final states (A): This is a subset of the set of

states. The states in this set are called final states and

a string, which stops at one of these states, is said to

be accepted by the automaton.

Transition function (δ): This is a rule that describes

the transition to a state if given a particular input

symbol on a particular state [8].

There are many other types of automaton, which are

modifications of this basic automaton. Some basic

types of automaton are:

a) Finite automaton

b) Push-down automaton

c) Linear-bounded automaton

d) Turing machine

Taking the example of a machine like fan, the process

of constructing and understanding a finite state

machine is described.

Set of States: A fan can have two possible states i.e.

‘ON’ and ‘OFF’. Thus,

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 948

Q= {ON, OFF}.

Input Alphabet: Consider an input 1 to switch on the

fan and input 0 to switch off fan. Thus,

∑= {0, 1}.

Initial state: Let initially the fan is in ‘OFF’ state.

Thus, qo= OFF.

Set of final states: Let the final state of the fan be

‘ON’.

Thus, A= {ON}.

Transition function: The transition function is

described as:

δ: (Q x ∑) Q

This means that on any state q, if an input is given, a

possible transition to another state is possible. The

finite state machine for fan is shown in Figure 1 and

corresponding transition table is given in Table 1.

This means that if 1 is given on state OFF state, fan

will move to ON state and on providing 0 input, it

will move to O. Otherwise, it will remain on same

state. In this way, the fan can be represented as a

finite automaton.

Figure 1: Finite State Machine for a Fan

Table 1. Transition table for Fan Automaton

II. APPLICATIONS OF AUTOMATON

Automata theory is the study of machines, which can

be used to represent any computational system as

well as computational problems that can be solved

using them. It is important to study this because it

allows scientists to understand how machines solve

problems. Some important fields in which automata

theory is applicable are:

1. Compiler design [13]

2. Time granularity representation in databases

[1]

3. Deep packet inspection in network [2]

4. Bio-Informatics [11]

Different papers have been reviewed which describe

use or application of automata theory in some way or

the other. The main emphasis is on how and what

concepts of automata theory is being used in

different fields discussed in each paper.

Discussion of these applications is done in the

following sections.

III. COMPILER DESIGN

A compiler is translator that converts a program

written in a high-level language into low-level

language. It takes as input a program in a specific

language, translates it into machine language, and

executes it. Before translation, it checks various

factors like tokens, syntax, semantics etc. The need of

a compiler is because of the reason that computer

understands only binary language, which is difficult

to code in [13].

The process of translation is consists of several phases

or stages. Each stage takes input from previous stage,

does some processing, and gives output to the next

stage. Through these stages, the source code is

converted into object code. The various phases of a

compiler are the following:

a) Lexical analysis

b) Syntax analysis

c) Semantic analysis

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 949

d) Intermediate code generation

e) Code optimization

f) Code generation

The diagrammatic representation of the phases of

compiler is given in Figure 2.

Figure 2: Phases of a compiler

The first phase of compiler is lexical analysis. In this

phase the source code that comprised of large

sentences are broken into small tokens. A token is

the indivisible unit in a program. It can be a constant,

identifier, string, operator etc.

Then it checks the tokens for their validity i.e.

whether the token is a valid token or not. In order to

check the validity of the tokens the programming

language specifies some rules. Here, the role of

automata theory and regular expressions comes into

effect. The rules to check the validity are written in

the form of mathematical expressions called regular

expressions. The regular expressions are used for

description of tokens. The tokens described using

regular expressions are further recognized using

finite automata.

The program that simulates the DFA for these

regular expressions can be used to check whether a

given token belongs to the language or not. If the

token string is accepted by the DFA, then it is a valid

token and can be passed to the next state, otherwise

it is invalid.

The second phase of the compiler i.e. syntax analysis

also has an application of another automaton. This

phase is also called parsing. In this phase, the

sequence of tokens which forms an expression are

checked for the syntax specified by the grammar for

that language and generates a parse tree or syntax

tree. Due to the limitations of regular grammar, (e.g.,

regular grammar cannot check balancing parenthesis,

since it does not have memory), in this phase we use

context free grammar for syntax checking [13]. The

rest of phases of compiler derive their output from

the output of syntax analysis.

IV. TIME GRANULARITY

Granularity is defined as the level of refinedness or

minuteness of a quantity. It means how much a

system is composed of distinct pieces. For example,

an hour can be broken into smaller granules like

minutes, seconds, and milliseconds. The term time

granularity is related to database and is called

temporal granularity or timestamp granularity. In

database, the time of occurring of any event is

recorded by the computer and is called timestamp.

Chronons are the basic elements of granularity. A

chronon is an indivisible time interval of some fixed

duration. So, they group together to form granules. If

the timestamp granularity is one second, then the

duration of each chronon is one second (and vice-

versa).To store valid time date like September 12

2017 with a valid timestamp granularity of a second,

we need to store it as a particular second during that

day, for example, midnight September 12th, 2017

[1,5].

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 950

Regular ὡ-languages are a variation of regular

languages as these are those languages, which contain

infinite length strings. Their accepting device is

calledὡ-automaton. Out of many types of ὡ-

automaton, one is Buchi automaton, which accepts

infinite length word if on parsing the string on the

automaton, it visits one of the final states infinitely

often. A new class of automaton called ultimately

periodic automaton, which accepts ultimately

periodic words, is used. to form a subclass of Buchi

automata. Since, a finite sequence of words is

repeated in this language, thus, it also has inherent

properties of automata for finite words like NFA.

The similarities between UPA, Buchi automaton and

NFA are used to devise solution for the basic

problems like inclusion problem, equivalence,

optimization, emptiness, membership problem etc.

for the ultimately periodic languages. Figure 3 shows

the various levels of inheritance of properties in

these languages.

Figure 3. Levels of inheritance for Language

Properties

Using this theory, we can represent the sets of time

granularities in very compact form on which

algorithms for manipulation can be applied easily.

Then the UPA is applied to a concrete time

granularity scenario taken from medical world.

Ultimately periodic languages can be expressed as

finite unions of languages of the form U{v} ω, where

U is a regular language of finite words and v is a non-

empty finite word.[1] Such language contains strings

which contain infinite length but a finite number of

non-equivalent repeating patterns repeated

infinitely.

The paper takes a real world example of clinical

medicine and applies the theory of Ultimately

Periodic Languages to solve a problem. The problem

is taken from the medical domain of heart transplant

patients. Post transplantation guidelines are given to

the patients which tell them about their required

drug dosage and periodical visits for life. These

requirements are collected in the form of protocols,

which specify the schedules for the therapies and the

frequency of the check-ups. An excerpt of the

guidelines for a heart transplant patient is used in the

paper [6]. Depending on the physical conditions of

the patient, the guidelines can require, together with

other treatments, an estimation of the glomerular

filtration rate (GFR) with one of the following

schedules [1]:

a) 3 months and 12 months post transplantation

and every year thereafter;

b) 3 months and 12 months post transplantation

and every 2 years thereafter.

Here, the therapies are in the form of time

granularities of months or years. These protocols

involve unanchored granularities (independent of

the starting point of therapy), and sets of

granularities with different repeating patterns,

which represent the set of different periodicities of

the therapies. Therefore, the two problems are:

1. Different protocols can be specified for the

same class of patients by different

institutions. In such case, we need to check

whether two protocols specify same set of

therapies. This is similar to the equivalence

problem where we check if two languages

contain same strings.

2. Checking whether a given

therapy/granularity assigned to a patient

belongs to the set of therapies/granularities of

the protocol. This can be solved using the

consistency checking problem algorithm.

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 951

V. DEEP PACKET INSPECTION

Deep packet inspection is a method of filtering the

packets of a network and managing their flow. It

examines, unlike other inspection methods, not only

the header part of the packet but also the data part.

Thus, it looks for anything in the packet, which is

not according to the protocol, or anything hindering

the protocol like viruses, intrusions, etc. and decides

whether the packet may pass or if there is a need to

divert to a different destination. It is used in the

application layer of the Open Systems

Interconnection model. [2]

In a network, messages are sent in the form of

packets of data. Packet content scanning is important

process due to factors like network security, network

monitoring, HTTP load balancing, etc. In this process,

the packet payload is matched against a set of regular

expressions to check whether it contains valid

content (that is allowed to pass through the network)

or not. Thus, we get another application of automata

theory in the field of networking in order to scan the

packets.

Regular expressions are used in pattern matching

because they can easily express any string pattern. A

finite automaton can be drawn for a regular

expression. This paper first tells us various existing

solutions for regular expression matching using these

automata.

In networking applications, Z(set of input symbols)

contains the 28 symbols from the extended ASCII

code in dfa as well as nfa. According to a study on

worst-case scenario, [8] a regular expression whose

length is n can have an NFA with O (n) states. It’s

corresponding DFA may have O (Zn) states since for

each input symbol in Z, there is a possibility on n

different transitions. Processing complexity for each

input character is O (1) in a DFA, but is O (n2) for an

NFA with all n states active at the same time, because

for each input character there can be n transitions at

maximum. To handle m regular expressions, two

choices are possible:

a) Processing them individually in p automata

b) Compiling them into a single automaton.

If we process p automata individually, this creates

large numbers of active states which leads to worst

case complexity as the sum of p separate NFAs. This

method can be slow, since for each input symbol,

each active state must be serially examined to obtain

new states. In DFA-based systems, we can easily

create the combined regular expression for the p

regular expressions and thus a composite DFA can be

produced. This provides better performance over

running p individual DFA. Specifically, a composite

DFA reduces processing cost from O (p) (O (1) for

each automaton) to O (1), i.e., a single lookup to

obtain the next state for any given character since in

a DFA, for each input symbol on a state ,there can be

only one transition. However, the number of states

in the composite automaton grows to O (Zpn) in the

theoretical worst case. [2]

Between DFA and NFA, there is what is called lazy

DFA. Lazy DFA are designed so as to reduce memory

consumption of DFA [9][10]: a lazy DFA keeps a

subset of the DFA such that it contains the

commonly used strings in memory. Thus, it provides

good performance for common input strings. But a

disadvantage of this approach is that malicious

senders can easily construct packets that keep the

system busy and slow down the matching process by

knowing the common strings.

Using parallel processing techniques we can speed up

the regular expression matching process. But these

approaches have limitations like the cost of hardware

and embedding. In this paper a new DFA based

approach on general purpose processor has been

devised. The focus of the study is to reduce the space

complexity of DFA and getting the processing speed

of O (1) per character. In order to achieve this, a

method of regular expression rewrite techniques has

been devised. In this method, instead of exhaustive

matching we use non-overlapping matching.

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 952

Exhaustive Matching: In this type of matching, the

string is scanned for any substring that matches with

the given regular expression. This type of matching is

expensive and often unnecessary to report all

matching substrings.

Non overlapping: In this matching process, all non-

overlapping substrings that match the pattern are

given as output.

For the pattern 10* and the input 1000, the three

matches overlap by sharing the prefix 10 (10, 100,

1000). Thus, here non-overlapping matching will

give only one match rather than giving three

overlapping matches.

In order to avoid interaction between DFAs (which

is the phenomenon in which the composite DFA of

two DFAs contains more number of states than the

sum of the states of the two DFAs), so that an

improvement of speed is there, a grouping scheme

has been developed. In this scheme, the p patterns

are divided into k groups such that patterns in each

group do not interact with each other. These

algorithms reduce the time complexity of

computation from O (p) to O (k) without causing

extra memory usage. Thus, a new DFA-based packet

scanner using the above techniques is implemented.

Figure 4 shows the methodologies used for deep

packet inspection in the paper being discussed.

Figure 4.Methodologies used for fast and memory

efficient packet inspection

VI. BIO INFORMATICS

Cellular automaton is a type of automaton, which

consists of a grid of cells. Here, each cell acts like an

individual automaton and thus it is in one of the

finite number of states. The grid can be one

dimensional, two dimensional or n dimensional. The

set of cells present near a cell are called its

neighbourhood. Each cell is assigned an initial state

at time t=0. By applying some rules on each state and

advancing time by 1, a new state is obtained in terms

of the current state for each cell and its

neighbourhood. This creates a new generation of the

cells. Generally, the rules for updating the state of

cells are the same for the entire grid [3].

Cellular automata can be used to represent the

behaviour of complex systems in nature. They

perfectly depict the behaviour of self-reproducing

systems. Thus, they have been studied extensively in

the natural sciences, mathematics, and in computer

science. [4]

According to some studies conducted, it has been

found that mutagenesis is not completely random

phenomenon. Thus, the changes in the DNA

sequence that it leads to, are somewhat predictable

[11][12]. Using this observation, this paper talks

about a software tool called DNA_EVO that can

determine the rules of DNA evolution using

algorithms which take as input the DNA sequences

of different generations, and if the evolution rules are

available then it can give the DNA sequence in any

previous evolution step for which the exact sequence

information was not known.

Two main assumptions have been made in this paper:

1. No role of natural selection: All the evolution

that happens is due to mutation only and

there is no role of natural selection.

2. Effect of neighbor nucleotides: Mutagenesis

of a nucleotide is also influenced by the

identity of the surrounding nucleotides.

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 953

One dimensional cellular automaton has been used to

model the DNA sequence. A collection of cells of

cellular automata forms the DNA with each cell

representing a nucleotide. Four states are possible of

each cell, namely, A, T, G and C and quaternary

numbers are used to represent these states. The

cellular automaton representing DNA evolves at

discrete time step. In evolution, the state of one or

more cells changes. The time interval between two

stages of evolution is called a time step. According to

assumption 2, the state of a cell during evolution will

be affected by the neighbour cells. So, the state of a

cell at any time step t is a function (evolution rule) of

the states of neighbour cells at t-1 and its own state

at t-1.

Where, State (j, t) represents state of jth cell at time

step t, f is the evolution rule and r is the

neighbourhood size.

Also, in this paper, linear evolution rules have been

considered and thus, square matrices are used to

represent f i.e. the evolution rule here is a square

matrix of states of cells at t-1 stage. This matrix

contains only 0 or 1 as elements and has dimensions

n x n, where n is the number of cells in the DNA.

Thus, if we have the DNA sequence of various

generations, then we can find the evolution rule i.e.

matrix f. Using this rule, we can predict future

generation sequence of DNA or previous generation’s

sequence if it was not known. In order to find the

matrix f, we have various possible options of placing

0 and 1. If we consider four state CA and two cells in

neighbour (one on left and one on right) and one cell

itself, the number of possible rules is 464, which is

quite large. In order to find suitable rule from the

search space, the paper has used genetic algorithm.

Genetic algorithms (GA) can efficiently find

solutions for problems with complex search space.

These algorithms are based on the concepts of

natural selection and genetics. In this algorithm, the

solutions to the optimisation problem are

representedin the form of a fixed length tuple, which

represents a ‘chromosome’. Each solution in this

tuple/chromosome is a ‘gene’. A set of chromosomes

form the population.

A target function is used to evaluate the solution

represented by each tuple. So, the target function

evaluates the ‘fitness’ of each chromosome and

selects chromosome with highest fitness as the

optimal solution. Then it produces next generation

using operations like, natural selection, crossover and

mutations.

1. Natural selection: This process selects the

solutions with high fitness values and

discards solutions with low fitness values.

2. Crossover: In crossover, if z is the length of

the chromosome, then a crossover point is

chosen anywhere between 1 to z-1 and the

portions of the two chromosomes beyond the

crossover point are exchanged. This is done

to get better combinations from two highly

fit chromosomes.

3. Mutation: A random gene of a chromosome

is selected and its base is changed or in terms

of CA, the state of the cell is changed.

Figure 5 shows the flowchart for the genetic

algorithm.

Figure 5. Flowchart for Genetic Algorithm

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 954

In this way, the tool finds the evolution rule and thus

can be employed to predict sequences for future

generations. The developed tool can also be used to

test various parameters that could influence

evolution.

VII. COMPARISION AND CONCLUSION

This paper is aimed at giving an idea of application of

Theory of computation in various fields. Review of

four papers, which show application of theory of

computation in fields like compiler design, database

systems, Deep packet Inspection and bio informatics,

is done.

Table 2 shows the comparison between different

parameters of various applications of automata

discussed. From the various applications discussed,

the common thing in all of them is that there are

some states, some input and some computation to be

done. Thus, Theory of computation is applicable

anywhere there is computation to be done.

Discussion about how various types of automata have

been used in different applications to solve the

problem is done and also about some newly devised

automata like ultimately periodic language automata.

Also, from the comparisons done between the three

applications, it can be concluded that each

automaton can be exploited to represent a real life

computation problem and using the existing

machines, new machines can be devised to solve our

purpose.And from these applications, an important

thing to be learnt is that how to correlate the

theoretical concepts with real life. There are many

other applications of automata theory for example in

image processing, in chemistry, biology and

earthquake measuring and sensing etc. in which

researches are going on. They have been used as

models of physical and biological phenomena, such

as fluid flow, galaxy formation, earthquakes, and

biological pattern formation.

Table 2. Comparison of the above discussed

applications

VIII. FUTURE SCOPE

A natural development of the present work of theory

of ultimately periodic languages is the definition of a

high level logical language, e.g., a variant of

propositional linear temporal logic [7] that allows

one to represent all UPA-recognizable languages by

means of suitable formulas. In the second application,

the new DFA based method devised can prove to be

really cost efficient and productive and thus can

become widely used. Related to application in packet

scanning, in the future, further study to apply

different DFA compression techniques and explore

tradeoffs between the overhead of compression and

the savings in memory usage would be useful. Since

this tool has made DNA predictions possible, it can

further be used to generate DNA sequences with

highly desirable properties for an organism.

IX. REFERENCES

[1]. Bresolin, D., Montanari, A., & Puppis, G.

(2009), "A theory of ultimately periodic

languages and automata with an application to

time granularity", Acta Informatica, Vol. 46,

Issue 5, pp. 331-360.

[2]. Yu, F., Chen, Z., Diao, Y., Lakshman, T. V., &

Katz, R. H. (2006), "Fast and memory-efficient

Volume 3, Issue 1, January-February-2018| www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 955

regular expression matching for deep packet

inspection. ACM/IEEE Symposium

Architecture for Networking and

Communications systems (ANCS), pp. 93-102.

[3]. Andrews, G., & Dobrin, A. (2005), "Cellular

Automata and Applications", pp. 1-6.

[4]. Mitchell, M. (1996). "Computation in cellular

automata: A selected review". Nonstandard

Computation, pp. 95-140.

[5]. Bettini, C., Jajodia, S., & Wang, S. (2000), "

Time granularities in databases, data mining,

and temporal reasoning", edition 1, Springer

Science & Business Media, pp. 11-18.

[6]. Loma Linda International Heart Institute:

Paediatric heart transplantation protocol. Tech.

rep., International Heart Institute, Loma Linda

University Medical Center, Loma Linda, CA

(2002). Available at:

http://www.llu.edu/ihi/pedproto.pdf

[7]. Emerson, E. A. (1990), "Temporal and modal

logic", Handbook of Theoretical Computer

Science: Formal Models and Semantics, MIT

press, pp. 995-1072.

[8]. Hopcroft, J. E., Motwani, R., & Ullman, J. D.

(2001), "Introduction to automata theory,

languages, and computation". ACM Sigact

News, Vol. 32, Issue 1, pp. 60-65.

[9]. Green, T. J., Gupta, A., Miklau, G., Onizuka,

M., & Suciu, D. (2004), "Processing XML

streams with deterministic automata and

stream indexes" ACM Transactions on

Database Systems (TODS), Vol. 29, Issue 4, pp.

752-788.

[10]. Sommer, R., & Paxson, V. (2003), "Enhancing

byte-level network intrusion detection

signatures with context" Proceedings of the

10th ACM conference on Computer and

communications security, pp. 262-271.

[11]. Mizas, C., Sirakoulis, G. C., Mardiris, V.,

Karafyllidis, I., Glykos, N., & Sandaltzopoulos,

R. (2008), "Reconstruction of DNA sequences

using genetic algorithms and cellular automata:

Towards mutation prediction" Biosystems,

Vol. 92, Issue 1, pp. 61-68.

[12]. McFadden, J., & Al-Khalili, J. (1999), "A

quantum mechanical model of adaptive

mutation" Biosystems, Vol. 50, Issue 3, pp.203-

211.

[13]. Ullman, J. D. (1972), "Applications of language

Theory to Compiler Design", Proceedings of

the May 16-18, 1972, spring joint computer

conference, pp. 235-242(ACM).

