
CSEIT1831341 | Received : 10 Feb 2018 | Accepted : 18 Feb 2018 | January-February-2018 [(3) 1 : 1290-1295]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

1290

-

Mapping Bug Reports to Relevant Files and Automated Bug

Assigning to the Developer

Alphy Jose*, Aby Abahai T

Computer Science and Engineering, Mar Athanasius College of Engineering and Technology, Ernakulam,

Kerala, India

ABSTRACT

Then bug means the coding mistake that occurs in the software developing stage. It may occurs because of

many reasons and some of the reasons are version mismatch, network incompatibility, and unavailability of

supporting documents. And bug report means a user level description about a bug. A bug report mainly having

a bug id, summery about a bug and a detailed description about the bug. A tool for ranking all the source files

with respect to how likely they are to contain the cause of the bug would enable developers to narrow down

their search and improve productivity. The ranking is done on the basis of comparing the source code and the

bug report, here 19 features are considering for the bug mapping procedure. And bug triaging refers to the

process of assigning a bug to the most appropriate developer in order to fix the bug. The process of bug triaging

is based on the interest of the developer and the bug mapping history of each developer. And also avoiding the

chances of occurrence of duplication in repository. This method is very useful for java projects working in the

netbeans, eclipse, tomcat platforms.

Keywords : Bug Report, Bug Mapping, Bug Triaging.

I. INTRODUCTION

Software bug which results in an incorrect output or

unexpected output due to the error or failure in a

computer program. To permanently cure a bug we

need to change the program. New bugs can be

introduced due to the bug fixing process, so it should

be the one of the most important step. Most of the

cause of the bug are due to the mistakes, errors or

due to the components in the operating systems,

unavailability of the supporting documents, network

incompatibility. Some of them are due to the

incorrect code, which is produced by the compiler.

Buggy means a program will be containing a huge

number of bugs and the will be adversely affecting

the functionality of the program. Under a testing

environment while in the testing phase when testing

the software which is found out by the testers are list

of bugs are known as bug report or issue report. The

test environment will be similar to the original

environment. In the development site the test

environment is created similar to the actual

environment in which the software is supposed to

work or run in live scenario. Bug reports which is

used for understanding the developers about the

software product defects. Majority of the companies

spend their time in resolving the bugs during their

day-to-day process. The software companies will be

having different teams and these teams will be

receiving a large number of bugs. One of the most

difficult tasks is that the finding the location of

source files with the correct bug. In their daily

process as they are receiving a large number of bug

reports and it is challenging for them to analyse

manually debug and resolve them. So here

introducing an automatic system that can rank the

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1291

source code files with the relevant bug reports. From

the source code will be taking the summary and

description. Code and comments are extracted from

the source code. This paper, which describes a

methodology learning to rank files that is, ranking

score, is computed by the weighted combination of

the features. Features which specifies the

relationship between the source code and bug report.

Weights are trained on previously fixed bug reports.

Here finding the similarity between the bug reports

and the source code files and its methods, API

similarities between the bug reports and source code

files, semantic similarity between the bug report and

source code files, computing collaborative score for

recommending systems, bug fixing history, code

change history, page rank score, hubs and authority

score and local graph features by the dependency

graph. That is obtaining ranking as which the pages

that can occur the bug is being retrieved effectively.

And also method for removing the duplicate bug

reports. Manual bug assigning to the correct

developer is expensive and usually results in wrong

assignment of bug reports to developers. Proposing a

method to automatically assign the bug reports to the

correct developers by data reduction technique by

feature selection that is, improving the quality of bug

data. From the historical data sets we will be

retrieving the attributes and constructing model that

predicts the new bug set. We first applies feature

selection technique to preprocess the textual

information in bug reports, and then applies text

mining technique build statistical models. The

approach also includes the usage of the clustering to

group the similar bug reports instead of random

grouping that make it easy to assign the bug to the

appropriate developer. For this process to take place,

we have to label the clustered groups in the order of

prioritization. Then, the labeled groups will be

assigned to the correct developer based on the

domain knowledge. The purpose of doing this

automation is that if we are considering an example

eclipse which will be created by a group of

developers. When a bug is occurred that is it will be

a bug which is not fixed. To assign whom is a huge

work. This process is having overhead. Developers

will be working on different modules. So to identify

a particular person we should take the previous

history, current and we should communicate with

peer developers and users. After that we should

recreate the problem from that only we can identify

the bug. This is time consuming to assign the bug to

correct developer within a short span of time. And

also expenditure will be also high. Thus we are

developing an effective bug system that is finding the

relevant pages that can occur the bugs, removing the

duplicate bugs, and assigning this ranked pages to the

correct developers so they can fix the bug fastly and

accurately which can reduce the time consuming.

We perform experiments on six large scale open

source java projects namely, Eclipse, Aspectj, Tomcat,

SWT, JDT, Birt.

II. LITERATURE SURVEY

The paper ‘Improving bug localization using

structured information retrieval’ which is written by

Saha[1]. Here uses Bluir method in which source

code will be taken as the input and then we will be

creating abstract syntax tree (AST) using JDT (Java

development toolkit) and parsing through the

abstract syntax tree. Dividing the source code into

four document fields class, variable, comment, and

method. Then performing tokenization splitting into

a bag of words using white spaces. And will be stored

in the structured Xml document. Then it will be

Units indexed into an array using an indexer. From

the bug report extracting the summary and

description. Performing tokenization as discussed

above which is splitting into tokens by a bag of

words using the white spaces. Bluir which

outperforms bug locator and here computing the

similarity between the features as a single sum is

having less accuracy than our method. In this

method using the fixed revision of source code is

used for the evaluation of bug reports which can lead

to very bad contamination bug reports in case of

future fixing bug information. Next paper ’Where

Should the Bugs Be Fixed?’ which is written by

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1292

Zhou[2]. Here propose a bug locator which is a

method for retrieving the information. This is done

for finding the location of the bug files. This method

ranks all files that is having a textual similarity

between the bug report and the source code file

using the vector space representation model(VSM).

When bug is received we will be computing the

similarity between the bug and source code using the

similarity measures by analyzing the past fixed bugs.

The ranked list of files will be in decreasing order.

The top in the list are more likely to contain the

result. If contains similar bugs then they are

proposing another method that is, three layer

heterogeneous graph. First layer which represents

the bug reports. Second layer shows previously

reported bug reports, and the last layer which is the

third layer which represents the source code files.

Major disadvantages to the work are if the developer

uses non-meaningful names the performance will be

severely gets affected. And also bad reports which

can cause misleading of the information and also

essential information can cause significant delay.

And thereby performance will be affected. Next

paper ‘Mapping Bug Reports to Relevant Files: A

Ranking Model, a Fine-Grained Benchmark, and

Feature Evaluation’ written by Xin ye[3] in this it is

being done by using learning to rank algorithm. The

ranking score is computed similarity between the

source code files and the bug report. So for that using

the feature extraction, extracting 19 features.

III. PROPOSED METHOD

For mapping bug reports to source code, first some

preprocessing will done on the source code and the

bug report. The source code contain the the code for

the program and the commented description abiut a

program. So we wants to perform the preprocessing

on the code and the comments. In case of bug report

it contain the summery about a bug and the

description about a bug. The preprocessing on the

bug report means, do all the preprocessing steps on

the summery and the description. The below

showing a bug report it having a bug id, summery

and the description about the bug.

Figure 1. Sample bug report

A Preprocessing

Preprocessing in which knowledge extraction is

being done. From the bug report use both description

and summary. From the source code file use the

whole content code and comments. For tokenization

we will be splitting into words by using the white

spaces. Then we remove thee stop words,

punctuation, numbers etc. all words are reduced

using porter stemmer as the NLTK[1] package. And

by using vector space modeling find out the vector

values of each term in a document. By developing a

vocabulary of the terms in a document.

In the preprocessing stage first step is to tokenize the

bug report and source code then removing the white

spaces and special characters in the code and the

report. Then by using the If we regard the bug report

as a query and the source code file as a text

document, then we can employ the classic vector

space model (VSM) for ranking, a standard model

used in information retrieval. In this model, both the

query and the document are represented as vectors of

term weights. Given an arbitrary document d (a bug

report or a source code file), compute the term

weights for each term t in the vocabulary based on

the classical tf.idf weighting scheme in which the

term frequency factors are normalized. The term

frequency can be determined by finding the number

of occurrence of a term in a document based on the

total number of terms in a document.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1293

Surface Lexical similarity

For a bug report, we use both its summary and

description to create the VSM representation. For a

source file, we use its whole content—code and

comments. To tokenize an input document, we first

split the text into a bag of words using white spaces.

We then remove punctuation, numbers, and

standard IR stop words such as conjunctions or

determiners. Cosine similarity function is used for

checking the similarity checking between the source

code and the bug report.

Figure 2

API enriched lexical similarity

Here find out the sematic similarity between the

source code and the bug report is done. Which

means some library function which including the

information about button and user interfacing tools

so such errors in the functions can be identified by

using this Api enriched lexical similarity.

Collaborative Filtering Score

The file has be fixed before certain type of errors it

can be identified by using this method consequently

it is expected to be beneficial in our retrieval setting,

too.

Class name similarity

Finding the class name similarity between the source

code and the bug report. This feature having the high

weightage than the all other feature evaluation

technique. Both the summary and Description is used

for the similarity checking.

Other features

i. Bug -Fixing Recency

ii. Bug-Fixing Frequent

iii. Summery class name Similarity

iv. Summery method name similarity

v. Summery variable name similarity

vi. Summery Comment name similarity

vii. Description class name similarity

viii. Description method name similarity

ix. Description variable name similarity

x. Description Comment name similarity

xi. Page rank score

xii. In-link dependencies

xiii. Out-link dependencies

xiv. Hub score

xv. Authority Score

Page rank score determine the complexity of a source

code and it is based on the in-link and out-link

dependencies.

The hub score and the authority score are based on

the Hyper Linked Induced Algorithm.

A. Weight Computation

For this we are using TF-IDF for calculation. TF

which indicates the number of occurrences of

specific term in the document. IDF which indicates

the number of documents that contain the specific

term. After the TF-IDF calculation cosine similarity

is being done. Cosine similarity is the similarity

between the bug report and the source code file.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1294

Figure 2. Bug mapping

B. Semantic Similarity

Semantic similarity between two words which means

that the two words whose meanings are similar. To

find out the meaning between bug report and source

code file we use machine learning approach. There

are two phases: training phase and testing phase. The

training which consist of bug reports and

corresponding bug ids which indicates the semantic

similarity between bug reports and source code files.

Every bug reports in the training data which

indicates the set of features. At training time, we

range all bug reports and feature extraction functions

to compile a feature vector per bug report. The

feature vectors are stored in a matrix. We train a

supervised learning method from the features and

the bug ids of the training examples As the bug ids in

the evaluation set that we use are binary, we build a

classifier. At testing time, features are generated for

the bug ids in the test set in a similar fashion as in the

training phase, and a final prediction is made with

the classifier trained in the training step.

C. Assigning Correct Developer

In this system we are developing a model to directly

assign the bug report to the correct developer. The

ranked list of pages that can occur as bug will be

given to the correct developer. So for this process to

occur we will be performing data reduction. That is

reducing the data and also removing the duplicate

bug reports. The architecture of the system is shown

below.

Figure 4. Assign to the Developer

IV. CONCLUSION

Through this work introduced an automated bug

system which can be effectively used in the software

companies. We will be getting ranked list of pages

that can occur the bug and it will be automatically

assigned to the correct developer who has developed

the code. And also remove the duplication of the

bugs. And also computed the semantic similarity

between the bug report and source code file. From

the previous experiments it was proved that learning

to rank approach is having higher accuracy which is

being used in our system. In the future work we can

use additional types of domain knowledge such as

stack traces and also features used in the defect

prediction system. Also plan to use ranking svm in

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1295

nonlinear kernels. Also to find how to prepare high

quality datasets.

V. REFERENCES

[1]. R. Saha, M. Lease, S. Khurshid, and D. Perry,

"Improving bug localization using structured

information retrieval," in Proc. IEEE/ACM

28th Int. Conf. Autom. Softw. Eng., Nov. 2013,

pp. 345-355. [2]

[2]. J. Zhou, H. Zhang, and D. Lo, "Where should

the bugs be fixed? -more accurate information

retrieval-based bug localization based on bug

reports," in Proc. Int. Conf. Softw. Eng.,

Piscataway, NJ, USA, 2012 pp. 14-24.

[3]. Xin Ye, "Mapping Bug Reports to Relevant

Files: A Ranking Model, a Fine Grained

Benchmark, and Feature Evaluation" IEEE

Trans. Softw. Eng., Vol. 42, No. 4, pp. 379-402,

April. 2016.

[4]. http://www.nltk.org/api/nltk.stem.html.

[5]. G. Antoniol and Y.-G. Gueheneuc, "Feature

identification: A novel approach and a case

study," in Proc. 21st IEEE Int. Conf. Softw.

Maintenance,Washington, DC, USA, 2005, pp.

357- 366.

[6]. G. Antoniol and Y.-G. Gueheneuc, "Feature

identification: An epidemiological metaphor,"

IEEE Trans. Softw. Eng., vol. 32, no. 9, pp. 627-

641, Sep. 2006.

[7]. B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G.

Srinivasa, and V. Vangala, "Debugadvisor: A

recommender system for debugging," in Proc.

7th Joint Meeting Eur. Softw. Eng. Conf. ACM

SIGSOFT Symp. Found. Softw. Eng., New

York, NY, USA, 2009, pp. 373-382.

[8]. A. Bacchelli and C. Bird, "Expectations,

outcomes, and challenges of modern code

review," in Proc. Int. Conf. Softw. Eng.,

Piscataway, NJ, USA, 2013, pp. 712-721.

[9]. S. K. Bajracharya, J. Ossher, and C. V. Lopes,

"Leveraging usage similarity for effective

retrieval of examples in code repositories," in

Proc. 18th ACM SIGSOFT Int. Symp. Found.

Softw. Eng., New York, NY, USA, 2010 pp.

157-166.

[10]. R. M. Bell, T. J. Ostrand, and E. J. Weyuker,

"Looking for bugs in all the right places," in

Proc. Int. Symp. Softw. Testing Anal., New

York, NY, USA, 2006, pp. 61-72.

