
CSEIT1831395 | Received : 12 Feb 2018 | Accepted : 25 Feb 2018 | January-February-2018 [(3) 1 : 1676-1681]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

1676

Skyline Computations with Partially Ordered Domains using

Indexing Method
Y. Gopi

*1
, Nallagonda Anitha

2

*1
Assistent Professor, Department of MCA, St. Mary's Group of Institutions, Guntur, Andhra Pradesh, India

2
PG Students, Department of MCA, St. Mary's Group of Institutions, Guntur, Andhra Pradesh, India

ABSTRACT

Efficient processing of skyline queries with partially ordered domains has been intensively addressed in recent

years. To further reduce the query processing time to support high-responsive applications, the skyline queries

that were previously processed with user preferences similar to those of the new query contribute useful

candidate result points. Hence, the answered queries can be cached with both their results and the user

preferences such that the query processor can rapidly retrieve the result for a new query only from the result

sets of cached queries with compatible user preferences. When caching a significant number of queries

accumulated over time, it is essential to adopt effective access methods to index the cached queries to retrieve a

set of relevant cached queries for facilitating the cache-based skyline query computations. In this paper, we

propose an extended depth-first search indexing method (e-DFS for short) for accessing user preference profiles

represented by directed acyclic graphs (DAGs), and emphasize the design of the e-DFS encoding that effectively

encodes a user preference profile into a low-dimensional feature point which is eventually indexed by an R-

tree. We obtain one or more traversal orders for each node in a DAG by traversing it through a modified

version of the depth-first search which is utilized to examine the topology structure and dominance relations to

measure closeness or similarity. As a result, e-DFS which combines the criteria of similarity evaluation is able to

greatly reduce the search space by filtering out most of the irrelevant cached queries such that the query

processor can avoid accessing the entire data set to compute the query results. Extensive experiments are

presented to demonstrate the performance and utility of our indexing method, which outperforms the baseline

planning techniques by reducing 37% of the computational time on average.

Keywords : Indexing Methods, Query Processing, Multi-Dimensional Databases, Data Management.

I. INTRODUCTION

Given a dataset containing multidimensional data

points, a preference query retrieves a set of data

points that could not be dominated by any other

points. Nowadays, preference query has emerged as a

considerably important tool for multi-preference

analysis and decision making in real-life. Skyline

query is considered to be the most important branch

of preference query. While preference query depends

upon a general dominance definition, skyline queries

explicitly considers total or partial orders at different

dimensions to identify dominance. Given a set of

data points D, a skyline query returns an interesting

subset of points of D that are not dominated (with

respect to the attributes of D) by any points in D. A

data point p1 is said to dominate another point p2 if p1

is at least as good as p2 on all attributes, and there

exists at least one attribute where p1 is better than p2.

Thus, a skyline query essentially computes the subset

of “optimal” points in D, which has many

applications in multi-criteria optimization problems.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1677

A skyline query is classified as static if all the

partially ordered domains remained unchanged at

query time; otherwise, if a user can specify a

different partially ordered domain to reflect his

preference at query-time, it is considered a dynamic

skyline query.

There has been a lot of research on the skyline query

computation problem, most of which are focused on

data attribute domains that are totally ordered,

where any two values are comparable. Usually, the

best value for a totally ordered domain is either its

maximum or minimum value or a totally ordered

domain can be represented as a chain. In our work,

regarding totally ordered domains, we assume the

smaller value is more preferred. Many approaches are

proposed to handle skyline queries with only totally

ordered domains and divided into two categories

according to whether rely on any predefined index

over the dataset. The category of techniques that do

not rely on any predefined index include BNL [4],

D&C [4], SFS [27], LESS [21], Salsa [3] and OSP

However, in many applications, some of the attribute

domains are partially ordered

Such as interval data (e.g. temporal intervals), type

hierarchies, and set-valued domains, where two

domain values can be incomparable. Since a partial

order satisfies inreflexivity, asymmetry and

transitivity, a partially ordered domain can be

represented as a directed acyclic graph (DAG). A

number of recent research works [10, 42] has started

to address the more general skyline computation

problem where the data attributes can include a

combination of totally and partially ordered domains.

SDC+ [10] is the first index method proposed for the

more general skyline query problem, which is an

extension of the well-known BBS index method [38]

designed for totally ordered domains. SDC+ employs

an approximate representation of each partially

ordered domain by transforming it into two totally

ordered domains such that each partially ordered

value is presented as an interval value. The state-of-

the-art index method for handling partially ordered

domains is TSS [42], which is also based on BBS.

Unlike SDC+, TSS uses a precise representation of a

partially ordered value by mapping it into a set of

interval values. In this way, TSS avoids the overhead

incurred by SDC+ to filter out false positive skyline

records.

Recently, a new index method called ZB-tree [33]

has been proposed for computing skyline queries for

totally ordered domains which has better

performance than BBS. The ZB-tree, which is an

extension of the B+-tree, is based on interleaving the

bit-string representations of attribute values using

the Z-order to achieve a good clustering of the data

records that facilitates e client data pruning and

minimizes the number of dominance comparisons.

Given the superior performance of ZB-tree over BBS,

one question that arises is whether we can extend the

ZB-tree approach to obtain an index that has better

performance than the state-of-the-art TSS approach,

which is based on BBS. Since the ZB-tree indexes

data based on bit string representation, one simple

strategy to enhance ZB-tree for partially ordered

domains is to apply the well-known bit vector

scheme [9] to encode partially ordered domains into

bit strings. We refer to this enhanced ZB-tree as

CHE+ZB. We also combine the encoding scheme in

TSS with ZB-tree to be another variant of ZB-tree

named TSS+ZB. Our experimental evaluation shows

that while CHE+ZB, TSS+ZB and TSS have

comparable performance, the performance of

CHE+ZB and TSS+ZB is often suboptimal as the bit

vector encoding scheme does not always pro-duce

good data clustering and effective data pruning.

Since partially ordered domains are typically used for

categorical attributes to rep-resent user preferences

(e.g., preferences for colors, brands, airlines), we

expect that the partial orders for representing user

preferences are not complex, densely connected

structures. As an example, consider the partial order

shown in Figure 1.1 representing a user’s preference

for car brands. The partial order shown has a simple

structure consisting of one minimal value

(representing the top preference for Ferrari), one

maximal value (representing the least preference for

Yugo), and two chains: the left chain represents the

user’s preference for German brands (with Benz

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1678

being preferred over BMW) which are incomparable

to the right chain representing the user’s preference

for Japanese brands (with Toyota being preferred

over Honda).

Figure 1. : Partial order representing a user’s

preference on car brands.

In our work, we introduce a new indexing approach,

called ZINC (for Z-order Indexing with Nested

Codes), that combines ZB-tree with a novel nested

encoding scheme for partially ordered domains.

While our nested encoding scheme is a general

scheme that can encode any partial order, the design

is targeted to optimize the encoding of commonly

used partial orders for user preferences which we

believe to have simple or moderately complex

structures. The key intuition behind our proposed

encoding scheme is to organize a partial order into

nested layers of simpler partial orders so that each

value in the original partial order can be encoded

using a sequence of concise, “local” encodings within

each of the simpler partial orders. Our experimental

results show that using the nested encoding scheme,

ZINC significantly outperforms all the other

competing methods.

II. Related Work

2.1 Skyline Queries with Totally Ordered

Domains

After skyline query processing is introduced into

database area by [4], researchers de-vote e ort on

processing skyline queries with totally ordered

domains where the best value for a domain is either

its maximum or minimum value.

2.1.1 NL, BNL

The first algorithm for processing skyline query is

the simple Nested-Loops algorithm (NL algorithm). It

compares every data point with all the data points

(including itself), and as a result it can work for any

orders. However, obviously NL is costly and

inefficient. In [4], a variant of NL is proposed called

Block Nested-Loops algorithm (BNL algorithm),

which is significantly faster and is an a-block-one-

time algorithm rather than a-point-one-time as NL.

BNL achieves the e client processing by a good

memory management. The key idea is to maintain in

main memory a window, which is used to keep

incomparable data points. When a data point ti is

read from input, ti is com-pared to all data points of

the window. Based on the comparison, ti is either

discarded, put into the window or put into a

temporary file which is allocated in disk and will be

considered as input in the next iteration of the

algorithm. At the end of each iteration, we can

output a part of data points in the window that have

been compared to all the data points in the

temporary file. These points are not dominated by

any other point and do not dominate any points that

will be considered in following iterations. Be exactly,

these output points are the points that are inserted

into the window when the temporary file is empty.

Thus, BNL achieves the effect of”a-block-one-time”.

In the best case, the most preferred objects fit into

the window and only one or two iterations are

needed. Meanwhile, BNL has considerable

limitations to its performance. First, the performance

of BNL is an acted very much by the discarding

effectiveness which BNL cannot affect at all.

Furthermore, there is no guarantee that BNL will

complete in the optimal number of passes.

2.1.2 D&C

Divide-and-Conquer algorithm (D&C algorithm) [4,

32], as its name indicates, takes a divide-and-conquer

strategy. It recursively divides the whole space into a

set of partitions, skylines of which are easy to

compute. Then, the overall skyline could be obtained

as the result of merging these intermediate skylines.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1679

2.1.3 SFS, LESS, Salsa, OSP

Sort-Filter-Skyline algorithm (SFS algorithm)

proposed in [27] performs an additional step of pre-

sorting before generating skyline points. In this step

the input is sorted in some topological sort

compatible with the given preference criteria so that

a dominating point is placed before its dominated

points. The second step is almost the same as the

procedure of BNL, except that in SFS when a point is

inserted into the window during a pass, we are sure

that it is a most preferred point since no point

following it can dominate it. SFS is guaranteed to

work within the optimal number of passes since SFS

can control the discarding effectiveness. Optimized

algorithms, Linear Elimination Sort for Skyline (LESS

algorithm) and Sort and Limit Skyline algorithm

(Salsa algorithm), are derived from SFS in [21] and

[3]. Finally, the Object-based Space Partitioning

(OSP algorithm), which is proposed in [53], performs

skyline computation in a similar manner, except for

that organizes intermediate skyline points in a left-

child/right-sibling tree, which accelerates the

checking of whether the currently read point could

be dominated by some intermediate skyline point.

All of the above methods do not rely on any

predefined index structure over the dataset. They all

require at least one scan through the data source,

making them unattractive for producing fast initial

response time. Another set of techniques [45, 31, 39,

33] are proposed which require that the dataset are

already indexed before skyline evaluation and

generally produce shorter response time.

Bitmap, Index

The Bitmap method is proposed in [45]. This

technique encodes in bitmaps all the information

needed to decide whether a data point belongs to the

skyline. In specific, whether a given data point could

be dominated can be identified through some bit-

wise operations. This is the first technique utilize the

efficiency of bit-wise operations. Meanwhile, the

computation of the entire skyline is expensive since

it has to retrieve the bitmaps of all data points. Also,

because the number of distinct values in domains

might by high and the encoding method is simple,

the space consumption might be prohibitive.

Another method, called Index method, is also

proposed in [45]. It partitions the entire data into

several lists, indexes each list by a B-tree and uses the

trees to find the local skylines, which are then

merged to a global one.

The skyline query computation suffers a high cost in

high dimensions with partially ordered domains. In

our previous work, we proposed a cache-based

framework called Caching Support for Skyline

computations (CSS) which uses a cache to store user

preference profiles and skyline results such that CSS

does not have to access the entire data set for

calculating the skyline results for a new query. We

have concluded that such a cache based approach

improves upon existing methods and is especially

well-suited for interactive applications that require a

fast response time.

Disadvantages:

No effective access methods to index the cached

queries for efficiently retrieving a set of relevant

cached queries for the skyline query computations.

III. Proposed System

In addition to the source-clustered and the attribute

relational graph (ARG) indexing methods, we

propose an extended depth-first search indexing

method (e-DFS) for accessing user preference profiles

of the cached queries. We first perform the e-DFS

encoding that effectively encodes a user preference

profile into a low-dimensional feature point which is

eventually indexed by an R-tree. We then obtain one

or more traversal orders for each node in a DAG by

traversing it through a modified version of the

depth-first search which is utilized to examine the

topology structure and dominance relations to

measure closeness or similarity. The system

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1680

framework using indexing methods. When a new

query q is requested, one access method (i.e., an

indexing method) searches for the similar user

preference profiles from the cached query set. Next,

the system performs a similarity evaluation to

compute the similarity scores only on the cached

queries selected by the access method to measure the

level of similarity with respect to the new query q,

and then evaluates the new query q based on the top-

k similar cached queries (s. If q cannot be answered

given the cached queries, the system directly accesses

the data set to compute the query result for q. Finally,

the system outputs skyline query results to the user

and caches the queries with the user preference

profiles and the results.

Advantages

 It uses a new access method e-DFS

 An e-DFS encoding method to convert a DAG

into a low-dimension point that preserves most

of the preference orders.

 Access time to the cached queries greatly

reduced.

Architecture

Modules:

Source-clustered Indexing

We introduce the first indexing method named

source-clustered indexing. This method uses the

node(s) in the first level of a DAG as the key(s) to

search for similar user preference profiles. We use

these nodes as the keys because the nodes in the first

level dominate those in the second level; those in the

second level dominate those in the third level, and so

on. Therefore, the nodes in the first level are more

important than those in the other levels.

Attribute Relational Graph Indexing

The source-clustered indexing method cannot

efficiently handle the cached queries with complex

user preference profiles, because the indexing

structure simply uses the source nodes as the keys

and the rest of the relations are not considered. On

the other hand, the attribute relational graph (ARG)

indexing structure maps a DAG to a corresponding

ARG. The ARG indexing method uses the relations

between vertices in a DAG as features, and converts a

DAG to a multi-dimensional feature point.

Extended Depth-First Search Indexing

The ARG indexing method is designed to represent

user preference profiles more effectively than the

source-clustered indexing method, particularly when

the number of vertices in a DAG is large. However,

the encoding method of the ARG indexing may

return high-dimensional feature points eventually

indexed by a Tree that suffers the curse of

dimensionality. Therefore, the ARG indexing

method incurs high computational costs when

searching for similar user preference profiles for new

queries. In this section, we introduce a method, the

extended depth-first search indexing algorithm (e-

DFS for short), which utilizes a modified depth-first

search algorithm to preserve the characteristics of

the dominance relations in a DAG, while reducing

the number of dimensions of the converted feature

points. Similar to the ARG indexing method, the e-

DFS indexing method adopts R-trees to store these

feature points.

IV. CONCLUSION

We propose a new indexing method called extended

depth-first search indexing method (e-DFS) for user

preference profiles represented by DAGs to facilitate

the access to the cached queries for efficient skyline

query computation with partially ordered domains.

The computation time of processing a new query is

significantly reduced, because the query results are

retrieved from the results of cached queries with

compatible user preferences, which must be accessed

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1681

through an efficient access method to select a set of

relevant cached queries for query processing.

V. REFERENCES

[1]. W. Balke, U. Guntzer, and C. Lofi. Eliciting

matters controlling skyline sizes by incremental

integration of user preferences. In DASFFA,

pages 551-562, 2007.

[2]. W. Balke, U. Guntzer, and W. Siberski.

Exploiting indi erence for customization of

partial order skylines. In IDEAS, pages 80-88,

2006.

[3]. I. Bartolini, P. Ciacia, and M. Patella. E cient

sort-based skyline evaluation. In TODS, volume

33(4), pages 1-49, 2008.

[4]. S. Borzsonyi, D. Kossmann, and K. Stocker. The

skyline operator. In ICDE, pages 421-430, 2001.

[5]. C. Boutilier, R. I. Brafman, C. Domshlak, H. H.

Hoos, and D. Poole. Cp-nets: A tool for

representing and reasoning with conditional

ceteris paribus preference statements. In JAIR,

pages 135-191, 2004.

[6]. C. Boutilier, R. I. Brafman, C. Domshlak, H. H.

Hoos, and D. Poole. Preference-based

constrained optimization with cp-nets. In

Computational Intelligence, vol-ume 20, pages

137-157, 2004.

[7]. C. Boutilier, R. I. Brafman, H. H. Hoos, and D.

Poole. Reasoning with conditional ceteris paribus

preference statements. In UAI, pages 71-80,

1999.

[8]. R. I. Brafman and C. Domshlak. Introducing

variable importance tradeo s into cp-nets. In In

Proceedings of UAI-02, pages 69-76. Morgan

Kaufmann, 2003.

[9]. Y. Caseau. E cient handling of multiple

inheritance hierarchies. In OOPSLA, pages 271-

287, 1993.

[10]. C. Y. Chan, P. K. Eng, and K. L. Tan. Stratified

computation of skylines with partially-ordered

domains. In SIGMOD, pages 203-214, 2005.

[11]. C. Y. Chan, H. V. Jagadish, K. L. Tan, A. K. H.

Tung, and Z. Zhang. On high dimensional

skylines. In EDBT, pages 478-495, 2006.

[12]. S. Chaudhuri, N. Dalvi, and R. Kaushik. Robust

cardinality and cost estimation for skyline

operator. In ICDE, page 64, 2006.

