
CSEIT1831402 | Received : 12 Feb 2018 | Accepted : 25 Feb 2018 | January-February-2018 [(3) 1 : 1597-1603]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

1597

-

Requirements Evocation and Analysis using ETL in Cloud

Environments
Dr. K. Purna Chand

Associate Professor, Department of CSE, B V Raju Institute of Technology, Narsapur, Telangana, India

ABSTRACT

Cloud is an efficient service provider due to its flexibility and scalability. It is very popular by providing

excellent services like IAAS, SAAS, and PAAS to the users. But still the cloud remains like a black-box for most

of the software engineering requirements. It is very difficult to identify and analyze the most important data

which is needed to be placed in the cloud. It is a most challenging task because of the practical difficulties that

arise during the configuration, execution, deployment and pre-processing of requirements. In this paper we

address some of these challenges through a flexible automation framework. We have automated the processing

of different users requirements as well as the storage of it in a data warehouse by using ETL.Finally, we have

developed a rich web portal to navigate, visualize and analyze the collected requirements.

Keywords : Automation, Cloud, requirements, Data Warehouse, ETL

I. INTRODUCTION

Requirements engineering (RE) is concerned with

the identification of the goals to be achieved by the

envisioned system, the operationalization of such

goals into services and constraints, and the

assignment of responsibilities for the resulting

requirements to agents such as humans, devices, and

software. The processes involved in RE include

domain analysis, elicitation, specification,

assessment, negotiation, documentation, and

evolution. Getting high quality requirements is

difficult and critical. Recent surveys have confirmed

the growing recognition of RE as an area of utmost

importance in software engineering research and

practice.

As companies shifting their applications from

traditional data centers to private and public cloud

infrastructures, they need to ensure that their

applications can move safely and smoothly to the

cloud. An application that performs one way in the

data center may not perform identically in

computing clouds [19], so companies need to

consider their applications present and future

scalability and performance. Neglecting the possible

performance impacts due to cloud platform

migration could ultimately lead to lower user

satisfaction, and worse, lower operating income. For

instance, a study by Amazon reported that an extra

delay of just 100ms could result in roughly a 1% loss

in sales [27]. Similarly, Google found that a 500ms

delay in returning search results could reduce

revenues by up to 20% [23].

One of the most reliable approaches to better

understand the cloud is to collect more data through

experimental studies. By using the experimental

measurement data, we can understand and able to

explain why it happened, and more easy to predict

what will happen in the future. Yet, conducting

large-scale performance measurement studies

introduce many challenges due to the associated

complexity of application deployment, configuration,

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1598

workload execution, monitoring, data collection, data

processing, and data storage and analysis. In addition,

due to the nature of the experiments, each

experiment produces a huge amount of

heterogeneous data, exacerbating the already

formidable data processing challenge.

Heterogeneity comes from the use of various

benchmarking applications, software packages, test

platform (cloud), logging strategies, monitoring tools

and strategies. Moreover, large-scale experiments

often result in failures; hence, storing in-complete or

faulty data in the database is a waste of resources and

may impact the performance of data processing. We

have created tools to fully automate the experiment

measurement process. Automation removes the error

prone and cumbersome involvement of human

testers reduces the burden of configuring and testing

distributed applications, and accelerates the process

of reliable applications testing. Next, the experiment

driver uses the generated resources and deploys and

configures the application, executes workloads and

monitors and collects measurement data.

The main contribution of this paper is the tools and

approaches we have described an attempt towards

automation of use case driven requirements analysis. To

address data processing and parsing challenges, we

have used ETL (extract, transform, and load) tools

and approaches [21], [22] to build a generic parser

(Shallow Parser) to process the collected data. The

proposed parser can process more than 98% of the

most commonly used file formats in our

experimental domain. To address the storage

challenge, we have designed a special data warehouse

to store performance measurement data. we created a

set of tables to store the data which is gained from

users requirements, and the schema is solely based on

the structure of the data (e.g., how many columns

and tables). Finally, to address the challenges

associated with navigating and analyzing an

enormous amount of performance measurement data,

we have built a web portal which helps users to

navigate, visualize and analyze the collected

requirements.

II. Related Work

Experiment measurement is a tedious process that

consists of multiple activities, and a typical

experiment measurement process consists of the

following three activities:

Create: preparing the experiment Platform (i.e.,

cloud) and deploying and configuring the

application.

Mange: starting the application components in the

correct order, executing workloads, collecting

requirment monitoring and other performance data,

and parsing and uploading the results into the data

warehouse.

Analyze: activities associated with analyzing the

collected requirements data using various statistical

and visualization techniques to understand and

explain performance phenomena.

In this approach, we have automated all three

activities to provide an efficient way to conduct

performance measurement studies. The high level

view of our approach, which details these activities

and some of the tools used in the process, appears in

Figure 1. As shown in the figure, the process consists

of eight activities, a brief description of these follows:

Experiment Design is the process of creating a

set of experiments that are necessary to evaluate

a given application in given target clouds.

Automation is the process of using generated

scripts to automate platform preparation,

application deployment and configuration,

experimental execution, data collection, and data

processing.

Experiments are the actual execution of workloads

and requirements elicitation

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1599

Figure 1 : Automated Framework

Figure 2 : Different Modules of the Framework

The functionality of every module can be explained

as

CloudStore is a flexible data warehouse that stores
and analyzes resource monitoring and performance
data col-lected through experiment measurements.
These data are in fact heterogeneous and vary
significantly depending on the experiments and
monitoring strategy.

Performance Map is a logical view of experiment
results, for example, an application’s performance
across differ-ent clouds.

Configuration is the process of using per-formance
data to make configuration decisions at runtime as
well as finding appropriate software settings for new
configurations.

Tuning is the process of using collected data to drive
more experiments to deeply understand observed
phenomena.

Experiment Redesign is the process of creating new

experiments or modifying existing experiments

either to validate online/offline configurations

or to prove (or disprove) performance

hypotheses.

We designed the automation infrastructure by

combining multiple modules and built-in flexibility

to accommodate new modules. We employed

modular architecture because of its distinct

advantage of enabling us to change one component

without affecting other components. The different

modules in the system are illustrated in Figure 2, and

a brief description of each is given below

Code generator: is the core of the automation which

generatesall the necessary resources to automate the

experiment management process. In a nutshell, code

generator takes experiment configuration files as the

input and generates all the required files (e.g., scripts).

Shallow Parser: The components of automation

frame-work are connected using SOAP and REST

APIs. We created an Axis2 [?] based Web service that

supports APIs for code generation, data extraction,

status update, and information listing. We used the

code generation API to create a command line tool

(CMI) for code generation.

Experiment Driver: We use a centralized approach

for experiment execution, and the component called,

the experiment driver, is responsible for this task.

Code generator generates all the scripts, and a special

script called run.sh, which maintains the sequence

for script execution. Experiment driver uses run.sh to

find the order of execution. It connects to all the

nodes through SSH/SCP and executes the scripts on

the corresponding nodes. In addition, experiment

driver is configured to collect and report information

about the user, time, workload start time and end

time and the platform to the shallow service through

the REST API.

Data Extraction: Each experiment produces gigabytes

of heterogeneous data for resource monitors (e.g.,

CPU, Memory, thread pool usage, and etc. . .),

response time and throughput, and application logs.

The structure and amount of collected data vary

based on system architecture (64-bits vs 32-bit, 2-

core vs. 4-core), monitoring strategy and monitoring

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1600

tools (e.g., sar, iostat, dstat, oprofile), logging strategy

(e.g., Apache access logs), and number of nodes and

work-loads. Data extractor is written to help users

easily export experiment data to the data warehouse.

File store: At the end of each experiment, experiment

driver uploads experiment data to a file server to

store the data in raw format. Some data analysis tools

need to have access to the original data files, so these

raw data files need to be retained. In addition, there

are temporal files and error logs files, which we do

not want to put into the database. Data extractor runs

on the file store to export data from the file store into

the data warehouse.

Cloudstore: Is the flexible, extensible and dynamic

data warehouse we have created specifically to store

heterogeneous experiment data collected through

our experiments.

Requirements Elicitation and Data Extraction and

Cloud Storage

In our approach to large scale experimental

measurements, we deploy actual or representative

applications actual or representative deployment

platforms (e.g., Amazon EC2) and execute workloads.

Through the large scale experiments, we produce a

huge amount of heterogeneous performance data.

The heterogeneous nature of the data is arising from

the nature of the applications, clouds, monitoring

tools, and monitoring strategies. We conduct large-

scale experiments and collect data by fully

automating the process, and our code generator

generates all the necessary resources to automate the

process.

The generated resources include shell scripts as well

as other configuration files (e.g., property files,

header files, action ordering and etc. In fact, shallow

parser is designed to the large-scale experiment

measurements with S generate an enormous amount

of metadata in the form of log files, i.e. structured

and semi-structured text files. This data needs to be

extracted and stored in the environmental data

warehouse for later analysis. The primary challenge

with this activity is the fact that different tools and

software packages produce the data of interest,

differently. Thus, the goal of an automated data

extractor is to build a generalized parsing approach

for experimental data to support both the known and

unknown data formats. To begin developing an

approach, we explored the more recent and

foundational research in the Extract, Transform and

Load (ETL) domain. Next, we built a system bound

by the existing data files known in the environment,

and more specifically, we focused on parsing ‘fixed

width’ flat files.

Generally speaking, the log files that comprise our

ETL domain have significant variability. The

following categories are just a few of points of

difference:

Structure - semi-structured: [flat files, delimited files,

HTML] and structured [XML].

 Data Record Structure - what arrangement or

construction within the file represents one data

record and how the data fields relate - explicitly

or implicitly - ontologically do.

 Data Type - numeric, string and other ASCII

characters.

 Data Variability - how consistent the data is

within a specific - either explicit or implicit -

data field and across the fields within a file.

 Data Validity - similar to Data Variability but

specifically related to identifying error conditions

within a specific - either explicit or implicit -

data field.

These observations suggest perhaps an alternative

view of the original problem. That is any log file

contains data and an inherent presentation. This

presentation is a mixture of inherent data ontology

and human readability factors. Any successful

approach must disambiguate these two concerns.

Specifically, an approach needs to be able to handle

three aspects of any given log file:

 Data - this concerns aspects of data quality and

validation.

 Ontology - that is the logical relationship among

the data elements in the file.

 Presentation / Layout - this concerns how the

data is expressed in the file.

During the course of our system design, we focused

on four main monitoring file data patterns, and these

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1601

cover more than 98% of the monitoring data

collected through our experiments. These patterns

are:

1)One header: The most basic case, a given file has

one header. This header can contain a row describing

records and a row describing fields, but it can also

just have a row containing fields.

2) Multiple headers with sequentially corresponding
data: This pattern is basically (1) except that another

header appears later in the file.

3) Multiple headers with non-sequential
corresponding data: This pattern differs from (2) in

that data later in the file matches the first header in

the file at some random position later in the file.

4) Multiple headers appear randomly in the file and
data is entirely non-sequential, i.e., randomly

distributed throughout the file.

We developed the tool to be user interactive, so a

domain expert can help the tool to correctly

interpret the data format. At the end of this process,

we build ontology for the file, and then we use the

created ontology to process the file during data

extraction. We use the previously described approach

for unknown or unseen file formats, but we use

existing ontologies to describe the file format for the

known files. Nevertheless, the matching algorithm

that we delivered followed a Greedy

Fig. 3. CloudStore- Sequence Diagram

for Automated Data Extractor algorithmic approach–

detailed below. We augmented this core

functionality with the following surrounding

functionality. Simple command line user interface to

capture user instructions for parsing header rows.

Object-oriented design that supports separating files

con-tents from file format and layout.

Header-to-Data Row Matching Algorithm, this

algorithm leverages multiple heuristics to achieve its

objective: Generate a byte-array representation of

the string.

– Compute character frequencies and scale weights

based on character frequency. For example, if a tab

appears once in a string, this character receives

significantly more weight than spaces that occur in

over half of the string. Alphanumeric characters are

marked as 0.

– If more than one header appears in a document, do

a byte-wise comparison of the header row to the row

of data of interest. Whichever header-row of data

comparison results in the lowest absolute difference

is the header selected to process the row.

The sequence diagram shown in Figure 3 represents

the primary instruction flow for the parser. It shows

the flow of events for: initially loading a data

structure to hold the file contents; encoding rows of

the data structure to do later matching; and finally,

matching rows, classified as a row of data, to the

corresponding header.

CloudStore - A Flexible Data Warehouse

The performance and scalability measurement of

enterprise applications is a tedious process, and in

most cases, researchers are unaware of what

resources need to be monitored (whether it be high-

level data like response time or throughputs or low-

level data like resource utilization data and

application logs). Moreover, monitoring all the

possible resources is not an option, since this might

result in enormous performance overhead. Hence, a

researcher (or a performance engineer) typically

starts with a selected set of resources and gradually

changes the monitoring set based on observed

results.

In addition, large-scale experiments often result in

failures; hence, storing incomplete or faulty data in

the database is a waste of resources and may impact

the performance of data processing. Most OLAP

applications such as experiment data analysis require

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1602

joining multiple tables or performing self-joins.

When the tables are huge, processing becomes very

time consuming, and the processing time increases

significantly unless the tables can be loaded into the

main memory.

We address these problem through CloudStore—a

special data warehouse to store performance

measurement data. Our data warehouse is fully

dynamic that is the tables are created and populated

on-the-fly based on the experimental data. More

specifically, at the end of each experiment we create

a set of tables to store the data, and the schema is

solely based on the structure of the data (e.g., how

many columns, and tables). Tables names are created

dynamically by combining experiment ID and

timestamp, and names of the tables are stored in a

mapping table called ‘Resource Mapping Table’.

With this approach, if an experiment fails, we can

simply drop all the tables. Since we create tables for

each experiment, data processing becomes highly

efficient, because the small table size (related to each

experiment) can be easily joined in memory.

III. CONCLUSION

Shallow Parser, our automated experiment

management framework, has been developed to

minimize human errors and maximize efficiency

when evaluating computing infrastructures

experimentally. We have used the framework for a

large number of experimental studies and through

them we have collected a huge amount of data,

which we have used for finding interesting

performance phenomena.

In this paper we address some of these challenges

through a flexible automation framework. We have

automated the processing of different users

requirements as well as the storage of it in a data

warehouse by using ETL. Finally, we have developed

a rich web portal to navigate, visualize and analyze

the collected requirements.

Our future work includes, extending the data parser

to support additional data formats, extending the data

warehouse to use No-SQL databases, and extending

the visualization tool to support more customizable

graphing capabilities. Google Fusion Tables [23]

provides useful APIs and framework for processing

big data, our future work also includes utilizing them

for processing performance data.

IV. REFERENCES

[1]. Y Ioannidis, M Shivani, G Ponnekanti. ZOO: A

Desktop Experiment Management

Environment. In Proceedings of the 22nd

VLDB Confer-ence, Mumbai(Bombay), India,

1996.

[2]. K L. Karavanic, B P. Miller. Experiment

management support for performance tuning.

In Proceedings of the 1997 ACM/IEEE

conference on Supercomputing,

Mumbai(Bombay), India, 1996.

[3]. R Prodan, T Fahringer. ZEN: A Directive-based

Language for Automatic Experiment

Management of Distributed and Parallel

Programs. In ICPP 2002, Vancouver, Canada.

[4]. R Prodan, T Fahringer. ZENTURIO: An

Experiment Management System for Cluster

and Grid Computing. In Cluster 2002.

[5]. Y Wang, A Carzaniga, A L. Wolf. Four

Enhancements to Automated Distributed

System Experimentation Methods. In ICSE

2008.

[6]. S Babu, N Borisov, S Duan, H Herodotou, V

Thummala. Automated Experiment-Driven

Management of (Database) Systems. In HotOS

2009, Monte Verita, Switzeland.

[7]. A Fox, W Sobel, H Wong, J Nguyen, S

Subramanyam, A Sucharitakul, S Patil, D

Patterson. Cloudstone: Multi-Platform, Multi-

Language Benchmark and Measurement tools

for Web 2.0. In CCA 2008.

[8]. Y. Wang, M.J. Rutherford, A. Carzaniga, and

A. L. Wolf. Automating Experimentation on

Distributed Testbeds. In ASE 2005.

[9]. RUBiS: Rice University Bidding System.

http://rubis.ow2.org/.

[10]. Open Cirrus: Open Cloud Computing Research

Testbed. https:// opencirrus.org/.

[11]. WIPRO Technologies. www.wipro.com/.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1603

[12]. Amazon Elastic Compute Cloud.

http://aws.amazon.com.

[13]. Cai, Y., Grundy, J., and Hosking, J. Experiences

Integrating and Scaling a Performance Test Bed

Generator with an Open Source CASE Tool. In

ASE 2004.

[14]. Sarkar, S. Model driven programming using

XSLT: an approach to rapid development of

domain-specific program generators In

www.XML-JOURNAL.com. August 2002.

[15]. Grundy, J., Cai, Y., and Liu, A. SoftArch/MTE:

generating distributed system test-beds from

high-level software architecture descriptions.

In ASE 2001.

[16]. Malkowski, S., Hedwig, M., and Pu, C.

Experimental evaluation of N-tier systems:

Observation and analysis of multi-bottlenecks.

In IISWC 2009.

[17]. Jayasinghe, D., Malkowski, S., Wang, Q., Li, J.,

Xiong, P., and Pu, C. Variations in performance

and scalability when migrating n-tier appli-

cations to different clouds. CLOUD 2011.

[18]. Wang, Q., Malkowski, S., Jayasinghe, D.,

Xiong, P., Pu, C., Kane-masa, Y., Kawaba, M.,

and Harada, L. Impact of soft resource

allocation on n-tier application scalability.

IPDPS 2011.

[19]. Vassiliadis, Panos. A Survey of Extract-

Transform-Load Technology. Integrations of

Data Warehousing, Data Mining and Database

Technolo-gies: Innovative Approaches (2011).

[20]. Baumgartner, R., Wolfgang, G., and Gottlob,

G.,. Web Data Extraction System. Encyclopedia

of Database Systems (2009): 3465-3471.

[21]. Kohavi, R., Henne, R.M., Sommerfield, D.

Practical guide to controlled experiments on

the web: Listen to your customers not to the

HiPPO. In ACM KDD 2007.

[22]. Malkowski, S., Jayasinghe, D., Hedwig, M.,

Park, J., Kanemasa, Y., and Pu, C. Empirical

analysis of database server scalability using an

n-tier benchmark with read-intensive

workload. ACM SAC 2010.

[23]. Malkowski, S., Kanemasay, Y., Chen, H.,

Yamamotoz, M., Wang, Q., Jayasinghe,D.,

Pu,C., and Kawaba, M., Challenges and

Opportunities in Consolidation at High

Resource Utilization: Non-monotonic Response

Time Variations in n-Tier Applications. IEEE

Cloud 2012.

