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ABSTRACT 
 

Cloud is an efficient service provider due to its flexibility and scalability. It is very popular by providing 

excellent services like IAAS, SAAS, and PAAS to the users. But still the cloud remains like a black-box for most 

of the software engineering requirements. It is very difficult to identify and analyze the most important data 

which is needed to be placed in the cloud.  It is a most challenging task because of the practical difficulties that 

arise during the configuration, execution, deployment and pre-processing of requirements. In this paper we 

address some of these challenges through a flexible automation framework. We have automated the processing 

of different users requirements as well as the storage of it in a data warehouse by using ETL.Finally, we have 

developed a rich web portal to navigate, visualize and analyze the collected requirements. 
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I. INTRODUCTION 

 
Requirements engineering (RE) is concerned with 

the identification of the goals to be achieved by the 

envisioned system, the operationalization of such 

goals into services and constraints, and the 

assignment of responsibilities for the resulting 

requirements to agents such as humans, devices, and 

software. The processes involved in RE include 

domain analysis, elicitation, specification, 

assessment, negotiation, documentation, and 

evolution. Getting high quality requirements is 

difficult and critical. Recent surveys have confirmed 

the growing recognition of RE as an area of utmost 

importance in software engineering research and 

practice. 

 

As companies shifting their applications from 

traditional data centers to private and public cloud 

infrastructures, they need to ensure that their 

applications can move safely and smoothly to the 

cloud. An application that performs one way in the 

data center may not perform identically in 

computing clouds [19], so companies need to 

consider their applications present and future 

scalability and performance. Neglecting the possible 

performance impacts due to cloud platform 

migration could ultimately lead to lower user 

satisfaction, and worse, lower operating income. For 

instance, a study by Amazon reported that an extra 

delay of just 100ms could result in roughly a 1% loss 

in sales [27]. Similarly, Google found that a 500ms 

delay in returning search results could reduce 

revenues by up to 20% [23].  

 

One of the most reliable approaches to better 

understand the cloud is to collect more data through 

experimental studies. By using the experimental 

measurement data, we can understand and able to 

explain why it happened, and more easy to  predict 

what will happen in the future. Yet, conducting 

large-scale performance measurement studies 

introduce many challenges due to the associated 

complexity of application deployment, configuration, 
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workload execution, monitoring, data collection, data 

processing, and data storage and analysis. In addition, 

due to the nature of the experiments, each 

experiment produces a huge amount of 

heterogeneous data, exacerbating the already 

formidable data processing challenge.  

 

Heterogeneity comes from the use of various 

benchmarking applications, software packages, test 

platform (cloud), logging strategies, monitoring tools 

and strategies. Moreover, large-scale experiments 

often result in failures; hence, storing in-complete or 

faulty data in the database is a waste of resources and 

may impact the performance of data processing. We 

have created tools to fully automate the experiment 

measurement process. Automation removes the error 

prone and cumbersome involvement of human 

testers reduces the burden of configuring and testing 

distributed applications, and accelerates the process 

of reliable applications testing. Next, the experiment 

driver uses the generated resources and deploys and 

configures the application, executes workloads and 

monitors and collects measurement data.  

The main contribution of this paper is the tools and 

approaches we have described an attempt towards 

automation of use case driven requirements analysis. To 

address data processing and parsing challenges, we 

have used ETL (extract, transform, and load) tools 

and approaches [21], [22] to build a generic parser 

(Shallow Parser) to process the collected data. The 

proposed parser can process more than 98% of the 

most commonly used file formats in our 

experimental domain. To address the storage 

challenge, we have designed a special data warehouse 

to store performance measurement data. we created a 

set of tables to store the data which is gained from 

users requirements, and the schema is solely based on 

the structure of the data (e.g., how many columns 

and tables). Finally, to address the challenges 

associated with navigating and analyzing an 

enormous amount of performance measurement data, 

we have built a web portal which helps users to 

navigate, visualize and analyze the collected 

requirements.  

II. Related Work 

Experiment measurement is a tedious process that 

consists of multiple activities, and a typical 

experiment measurement process consists of the 

following three activities: 

Create: preparing the experiment Platform (i.e., 

cloud) and deploying and configuring the 

application.  

 

Mange: starting the application components in the 

correct order, executing workloads, collecting 

requirment monitoring and other performance data, 

and parsing and uploading the results into the data 

warehouse.  

 

Analyze: activities associated with analyzing the 

collected requirements data using various statistical 

and visualization techniques to understand and 

explain performance phenomena.  

 

In this approach, we have automated all three 

activities to provide an efficient way to conduct 

performance measurement studies. The high level 

view of our approach, which details these activities 

and some of the tools used in the process, appears in 

Figure 1. As shown in the figure, the process consists 

of eight activities, a brief description of these follows: 

 

Experiment Design is the process of creating a 

set of experiments that are necessary to evaluate 

a given application in given target clouds.  

 

Automation is the process of using generated 

scripts to automate platform preparation, 

application deployment and configuration, 

experimental execution, data collection, and data 

processing.  

 

Experiments are the actual execution of workloads 

and requirements elicitation 
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Figure 1 : Automated Framework 

 
Figure 2 : Different Modules of the Framework 

 

The functionality of every module can be explained 

as     

 

CloudStore is a flexible data warehouse that stores 
and analyzes resource monitoring and performance 
data col-lected through experiment measurements. 
These data are in fact heterogeneous and vary 
significantly depending on the experiments and 
monitoring strategy.  
 
Performance Map is a logical view of experiment 
results, for example, an application’s performance 
across differ-ent clouds.  
 
Configuration is the process of using per-formance 
data to make configuration decisions at runtime as 
well as finding appropriate software settings for new 
configurations.  
 
Tuning is the process of using collected data to drive 
more experiments to deeply understand observed 
phenomena. 

Experiment Redesign is the process of creating new 

experiments or modifying existing experiments 

either to validate online/offline configurations 

or to prove (or disprove) performance 

hypotheses.  

We designed the automation infrastructure by 

combining multiple modules and built-in flexibility 

to accommodate new modules. We employed 

modular architecture because of its distinct 

advantage of enabling us to change one component 

without affecting other components. The different 

modules in the system are illustrated in Figure 2, and 

a brief description of each is given below 

Code generator: is the core of the automation which 

generatesall the necessary resources to automate the 

experiment management process. In a nutshell, code 

generator takes experiment configuration files as the 

input and generates all the required files (e.g., scripts). 

 

Shallow Parser: The components of automation 

frame-work are connected using SOAP and REST 

APIs. We created an Axis2 [?] based Web service that 

supports APIs for code generation, data extraction, 

status update, and information listing. We used the 

code generation API to create a command line tool 

(CMI) for code generation. 

 

Experiment Driver: We use a centralized approach 

for experiment execution, and the component called, 

the experiment driver, is responsible for this task. 

Code generator generates all the scripts, and a special 

script called run.sh, which maintains the sequence 

for script execution. Experiment driver uses run.sh to 

find the order of execution. It connects to all the 

nodes through SSH/SCP and executes the scripts on 

the corresponding nodes. In addition, experiment 

driver is configured to collect and report information 

about the user, time, workload start time and end 

time and the platform to the shallow service through 

the REST API.  

 

Data Extraction: Each experiment produces gigabytes 

of heterogeneous data for resource monitors (e.g., 

CPU, Memory, thread pool usage, and etc. . .), 

response time and throughput, and application logs. 

The structure and amount of collected data vary 

based on system architecture (64-bits vs 32-bit, 2-

core vs. 4-core), monitoring strategy and monitoring 
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tools (e.g., sar, iostat, dstat, oprofile), logging strategy 

(e.g., Apache access logs), and number of nodes and 

work-loads. Data extractor is written to help users 

easily export experiment data to the data warehouse.  

 

File store: At the end of each experiment, experiment 

driver uploads experiment data to a file server to 

store the data in raw format. Some data analysis tools 

need to have access to the original data files, so these 

raw data files need to be retained. In addition, there 

are temporal files and error logs files, which we do 

not want to put into the database. Data extractor runs 

on the file store to export data from the file store into 

the data warehouse.  

 

Cloudstore: Is the flexible, extensible and dynamic 

data warehouse we have created specifically to store 

heterogeneous experiment data collected through 

our experiments. 

 

Requirements Elicitation and Data Extraction  and 

Cloud Storage 

       

In our approach to large scale experimental 

measurements, we deploy actual or representative 

applications actual or representative deployment 

platforms (e.g., Amazon EC2) and execute workloads. 

Through the large scale experiments, we produce a 

huge amount of heterogeneous performance data. 

The heterogeneous nature of the data is arising from 

the nature of the applications, clouds, monitoring 

tools, and monitoring strategies. We conduct large-

scale experiments and collect data by fully 

automating the process, and our code generator 

generates all the necessary resources to automate the 

process. 

 

The generated resources include shell scripts as well 

as other configuration files (e.g., property files, 

header files, action ordering and etc. In fact, shallow 

parser is designed to the large-scale experiment 

measurements with S generate an enormous amount 

of metadata in the form of log files, i.e. structured 

and semi-structured text files. This data needs to be 

extracted and stored in the environmental data 

warehouse for later analysis. The primary challenge 

with this activity is the fact that different tools and 

software packages produce the data of interest, 

differently. Thus, the goal of an automated data 

extractor is to build a generalized parsing approach 

for experimental data to support both the known and 

unknown data formats. To begin developing an 

approach, we explored the more recent and 

foundational research in the Extract, Transform and 

Load (ETL) domain. Next, we built a system bound 

by the existing data files known in the environment, 

and more specifically, we focused on parsing ‘fixed 

width’ flat files. 

  

Generally speaking, the log files that comprise our 

ETL domain have significant variability. The 

following categories are just a few of points of 

difference: 

 

Structure - semi-structured: [flat files, delimited files, 

HTML] and structured [XML].  

 

 Data Record Structure - what arrangement or 

construction within the file represents one data 

record and how the data fields relate - explicitly 

or implicitly - ontologically do.  

 Data Type - numeric, string and other ASCII 

characters.  

 Data Variability - how consistent the data is 

within a specific - either explicit or implicit - 

data field and across the fields within a file.  

 Data Validity - similar to Data Variability but 

specifically related to identifying error conditions 

within a specific - either explicit or implicit - 

data field.  

 

These observations suggest perhaps an alternative 

view of the original problem. That is any log file 

contains data and an inherent presentation. This 

presentation is a mixture of inherent data ontology 

and human readability factors. Any successful 

approach must disambiguate these two concerns. 

Specifically, an approach needs to be able to handle 

three aspects of any given log file: 

 

 Data - this concerns aspects of data quality and 

validation.  

 Ontology - that is the logical relationship among 

the data elements in the file.  

 Presentation / Layout - this concerns how the 

data is expressed in the file.  

 

During the course of our system design, we focused 

on four main monitoring file data patterns, and these 
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cover more than 98% of the monitoring data 

collected through our experiments. These patterns 

are: 

 

1)One header: The most basic case, a given file has 

one header. This header can contain a row describing 

records and a row describing fields, but it can also 

just have a row containing fields.  

 

2) Multiple headers with sequentially corresponding 
data: This pattern is basically (1) except that another 

header appears later in the file.  

 

3) Multiple headers with non-sequential 
corresponding data: This pattern differs from (2) in 

that data later in the file matches the first header in 

the file at some random position later in the file.  

 

4) Multiple headers appear randomly in the file and 
data is entirely non-sequential, i.e., randomly 

distributed throughout the file.  

 

We developed the tool to be user interactive, so a 

domain expert can help the tool to correctly 

interpret the data format. At the end of this process, 

we build ontology for the file, and then we use the 

created ontology to process the file during data 

extraction. We use the previously described approach 

for unknown or unseen file formats, but we use 

existing ontologies to describe the file format for the 

known files. Nevertheless, the matching algorithm 

that we delivered followed a Greedy 

  

 
Fig. 3.   CloudStore- Sequence Diagram 

 

 

for Automated Data Extractor algorithmic approach–

detailed below. We augmented this core 

functionality with the following surrounding 

functionality. Simple command line user interface to 

capture user instructions for parsing header rows. 

Object-oriented design that supports separating files 

con-tents from file format and layout.  

 

Header-to-Data Row Matching Algorithm, this 

algorithm leverages multiple heuristics to achieve its 

objective: Generate a byte-array representation of 

the string.  

 

– Compute character frequencies and scale weights 

based on character frequency. For example, if a tab 

appears once in a string, this character receives 

significantly more weight than spaces that occur in 

over half of the string. Alphanumeric characters are 

marked as 0.  

 

– If more than one header appears in a document, do 

a byte-wise comparison of the header row to the row 

of data of interest. Whichever header-row of data 

comparison results in the lowest absolute difference 

is the header selected to process the row.  

 

The sequence diagram shown in Figure 3 represents 

the primary instruction flow for the parser. It shows 

the flow of events for: initially loading a data 

structure to hold the file contents; encoding rows of 

the data structure to do later matching; and finally, 

matching rows, classified as a row of data, to the 

corresponding header. 

 

CloudStore - A Flexible Data Warehouse 
 

The performance and scalability measurement of 

enterprise applications is a tedious process, and in 

most cases, researchers are unaware of what 

resources need to be monitored (whether it be high-

level data like response time or throughputs or low-

level data like resource utilization data and 

application logs). Moreover, monitoring all the 

possible resources is not an option, since this might 

result in enormous performance overhead. Hence, a 

researcher (or a performance engineer) typically 

starts with a selected set of resources and gradually 

changes the monitoring set based on observed 

results.  

 

In addition, large-scale experiments often result in 

failures; hence, storing incomplete or faulty data in 

the database is a waste of resources and may impact 

the performance of data processing. Most OLAP 

applications such as experiment data analysis require 
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joining multiple tables or performing self-joins. 

When the tables are huge, processing becomes very 

time consuming, and the processing time increases 

significantly unless the tables can be loaded into the 

main memory. 

 

We address these problem through CloudStore—a 

special data warehouse to store performance 

measurement data. Our data warehouse is fully 

dynamic that is the tables are created and populated 

on-the-fly based on the experimental data. More 

specifically, at the end of each experiment we create 

a set of tables to store the data, and the schema is 

solely based on the structure of the data (e.g., how 

many columns, and tables). Tables names are created 

dynamically by combining experiment ID and 

timestamp, and names of the tables are stored in a 

mapping table called ‘Resource Mapping Table’. 

With this approach, if an experiment fails, we can 

simply drop all the tables. Since we create tables for 

each experiment, data processing becomes highly 

efficient, because the small table size (related to each 

experiment) can be easily joined in memory. 

 

III. CONCLUSION 

 

Shallow Parser, our automated experiment 

management framework, has been developed to 

minimize human errors and maximize efficiency 

when evaluating computing infrastructures 

experimentally. We have used the framework for a 

large number of experimental studies and through 

them we have collected a huge amount of data, 

which we have used for finding interesting 

performance phenomena.  

 

In this paper we address some of these challenges 

through a flexible automation framework. We have 

automated the processing of different users 

requirements as well as the storage of it in a data 

warehouse by using ETL. Finally, we have developed 

a rich web portal to navigate, visualize and analyze 

the collected requirements. 

 

Our future work includes, extending the data parser 

to support additional data formats, extending the data 

warehouse to use No-SQL databases, and extending 

the visualization tool to support more customizable 

graphing capabilities. Google Fusion Tables [23] 

provides useful APIs and framework for processing 

big data, our future work also includes utilizing them 

for processing performance data. 
 

IV. REFERENCES 

 

[1]. Y Ioannidis, M Shivani, G Ponnekanti. ZOO: A 

Desktop Experiment Management 

Environment. In Proceedings of the 22nd 

VLDB Confer-ence, Mumbai(Bombay), India, 

1996.  

[2]. K L. Karavanic, B P. Miller. Experiment 

management support for performance tuning. 

In Proceedings of the 1997 ACM/IEEE 

conference on Supercomputing, 

Mumbai(Bombay), India, 1996.  

[3]. R Prodan, T Fahringer. ZEN: A Directive-based 

Language for Automatic Experiment 

Management of Distributed and Parallel 

Programs. In ICPP 2002, Vancouver, Canada.  

[4]. R Prodan, T Fahringer. ZENTURIO: An 

Experiment Management System for Cluster 

and Grid Computing. In Cluster 2002.  

[5]. Y Wang, A Carzaniga, A L. Wolf. Four 

Enhancements to Automated Distributed 

System Experimentation Methods. In ICSE 

2008.  

[6]. S Babu, N Borisov, S Duan, H Herodotou, V 

Thummala. Automated Experiment-Driven 

Management of (Database) Systems. In HotOS 

2009, Monte Verita, Switzeland.  

[7]. A Fox, W Sobel, H Wong, J Nguyen, S 

Subramanyam, A Sucharitakul, S Patil, D 

Patterson. Cloudstone: Multi-Platform, Multi-

Language Benchmark and Measurement tools 

for Web 2.0. In CCA 2008.  

[8]. Y. Wang, M.J. Rutherford, A. Carzaniga, and 

A. L. Wolf. Automating Experimentation on 

Distributed Testbeds. In ASE 2005.  

[9]. RUBiS: Rice University Bidding System. 

http://rubis.ow2.org/.  

[10]. Open Cirrus: Open Cloud Computing Research 

Testbed. https:// opencirrus.org/.  

[11]. WIPRO Technologies. www.wipro.com/.  



Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 
 1603 

[12]. Amazon Elastic Compute Cloud. 

http://aws.amazon.com.  

[13]. Cai, Y., Grundy, J., and Hosking, J. Experiences 

Integrating and Scaling a Performance Test Bed 

Generator with an Open Source CASE Tool. In 

ASE 2004.  

[14]. Sarkar, S. Model driven programming using 

XSLT: an approach to rapid development of 

domain-specific program generators In 

www.XML-JOURNAL.com. August 2002.  

[15]. Grundy, J., Cai, Y., and Liu, A. SoftArch/MTE: 

generating distributed system test-beds from 

high-level software architecture descriptions. 

In ASE 2001.  

[16]. Malkowski, S., Hedwig, M., and Pu, C. 

Experimental evaluation of N-tier systems: 

Observation and analysis of multi-bottlenecks. 

In IISWC 2009.  

[17]. Jayasinghe, D., Malkowski, S., Wang, Q., Li, J., 

Xiong, P., and Pu, C. Variations in performance 

and scalability when migrating n-tier appli-

cations to different clouds. CLOUD 2011.  

[18]. Wang, Q., Malkowski, S., Jayasinghe, D., 

Xiong, P., Pu, C., Kane-masa, Y., Kawaba, M., 

and Harada, L. Impact of soft resource 

allocation on n-tier application scalability. 

IPDPS 2011.  

[19]. Vassiliadis, Panos. A Survey of Extract-

Transform-Load Technology. Integrations of 

Data Warehousing, Data Mining and Database 

Technolo-gies: Innovative Approaches (2011).  

[20]. Baumgartner, R., Wolfgang, G., and Gottlob, 

G.,. Web Data Extraction System. Encyclopedia 

of Database Systems (2009): 3465-3471.  

[21]. Kohavi, R., Henne, R.M., Sommerfield, D. 

Practical guide to controlled experiments on 

the web: Listen to your customers not to the 

HiPPO. In ACM KDD 2007.  

[22]. Malkowski, S., Jayasinghe, D., Hedwig, M., 

Park, J., Kanemasa, Y., and Pu, C. Empirical 

analysis of database server scalability using an 

n-tier benchmark with read-intensive 

workload. ACM SAC 2010.  

[23]. Malkowski, S., Kanemasay, Y., Chen, H., 

Yamamotoz, M., Wang, Q., Jayasinghe,D., 

Pu,C., and Kawaba, M., Challenges and 

Opportunities in Consolidation at High 

Resource Utilization: Non-monotonic Response 

Time Variations in n-Tier Applications. IEEE 

Cloud 2012. 


