
CSEIT1831426 | Received : 16 Feb 2018 | Accepted : 28 Feb 2018 | January-February-2018 [(3) 1 : 1767-1774]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

1767

-

1774

Study of Factors Affecting Reliability in Software Development

Process
Dilip Sadhankar1, Ashish Sasankar2

1Research Scholar, Department of Electronics & Computer Science, R.T.M. Nagpur University, Nagpur, Maharashtra, India
2Assocate Professor, Department of Computer Science, G.H. Raisoni Institute of Information Technology, Nagpur, Maharashtra, India

ABSTRACT

A timely delivered software product only if all the phases of software development process are completed

within estimated and mostly set up time. A software product with higher reliability, higher performance and

functionality is the demand of fast changing market demands. Many researchers have made significant tools

and techniques to accomplish the quality of software. However, at the same time, the field have need of a

future research work to improve the quality of software and to cut the challenges in each phase. Software

development processes issues have been in and around ever since the beginning of software development.

Software system development is viewed as a series of discrete ordered activities that produce successively

more constrained models of the system by binding in additional system aspects. Treating the system aspects as

separate concerns allows software engineering techniques that control production cost and enhance

reliability to be applied to each step. The greatest gains, however, are due to the reliability and traceability of

the system over its lifetime. In this paper, we present a comprehensive overview of productivity factors

recently considered by software practitioners. This paper also describes the major activities in the software

development along with its key issues.

Keywords : Effort, Function Point, Reliability, Empirical Testing, Factors, Development

I. INTRODUCTION

During the past few decades, software development

process has been the centre of attraction for many

software engineering researchers. Despite of the

details of products and customers, software is an area

where almost every industry is involved [1]. A

successful software development process is therefore

vital for industries in various fields. A systematic

move towards the design, development, testing, and

maintenance of software [2]. Figure 1.1 shows the

different phases involved in the Software

Development Lifecycle (SDLC). The main phases in

the software development process are:

 Planning

 Requirements Analysis

 Design

 Implementation

 Testing

 Maintenance

Figure 1: phases of SDLC

Source: Hans-Petter Halvorsen, 2017

In each phase, there are number of factors which

differentiate the software development processes and

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1768

results in different quality levels of the final software

product.

Software development, being a human-centered

process, human factors has a great impact on the

process and its performance. Human factors in this

process can be examined or studied from different

perspectives such as psychological, cognitive,

management and technical aspects. Beside this,

human factors have different levels of impact in the

process varying from organizational and

interpersonal to individual. Even though human

factors have been proving to have impact on

software development process, unfortunately the

researchers in the software engineering and

development research areas have overlooked them.

Thus, there seem to be a need to recognize and

characterize human factors and their impact on

development process. A systematic review over

software development human factors could draw

attention to the research needs and as a result

improve the research in the Software engineering

field.

The rest of this paper discuss the scope and need of

software engineering, diagnosing development

performance and issues affecting software

development.

II. BACKGROUND

Software and software systems are getting more and

more complex, so it is important to have the

necessary “tools” in your “toolbox” to be able to

create and maintain software. Software Development

is a complex process, and it may involve a lot of

money and a lot of people. Here are some examples:

 Windows 7: A Team with 1000 Developers

created Windows 7

 Number of Code Lines: Real systems may

have millions of code lines

 Big money: 100+ million Development

Projects

 Combination of Hardware and Software:

Most of the projects involves both hardware

and software and integration between them.

 iPhone 1: Development period 2004-2007,

1000 Apple employees worked with the

device, Estimated cost: $150 millions.

Project Planning and Management is important in

Software Development and it uses different

approaches to deal with the Software Development.

III. SCOPE AND NECESSITY OF SOFTWARE
ENGINEERING

Software engineering is an engineering approach for

software development. Developers alternatively view

it as a systematic collection of past experience. The

experience is arranged in the form of methodologies

and guidelines. A small program can be written

without using software engineering philosophy. But

if one wants to develop a large software product,

then software engineering principles are crucial to

achieve a high-quality software cost effectively [3].

Without using software engineering principles it

would be difficult to develop large programs. In

industry it is usually needed to develop large

programs to accommodate multiple functions [4]. A

problem with developing such large commercial

programs is that the complexity and difficulty levels

of the programs increase exponentially with their

sizes as shown in figure 1.2 . For example, a program

of size 1,000 lines of code has some complexity. But a

program with 10,000 LOC is not just 10 times more

difficult to develop, but may as well turn-out to be

100 times more difficult unless software engineering

principles are used [3]. In such circumstances

software engineering techniques come to salvage.

Software engineering helps to reduce the

programming complexity. Software engineering

principles use two important techniques to reduce

problem complexity: abstraction and decomposition

[5, 6].

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1769

Figure 1.2 Increase in development time and effort with

problem size

IV. LITERATURE SURVEY

Adam Trendowicz, Jurgen Munch (2009) studied

factors influencing Software Development

Productivity. In addition, instead of factors

influencing development productivity, some studies

considered a specific factor’s value and its specific

impact on productivity. For instance, some studies

identified the life cycle model applied to developing

software as having an impact of productivity, while

others directly pointed out incremental development

as increasing overall development productivity.

Petra C. De Weerd-Nederhofl (2001), shares his

experience on doing his research project on

organizing and managing new product development

systems. In a similar work by Ganesh N Prabhu

(2005), seeks to understand the complexities of the

new product development process with a panel

discussion at IIM-Bangalore, India. The panel

reviewed the emerging opportunities in new product

development in India, strategies for the development

of the new products, product development

capabilities, and issues and challenges in the

commercialization of new products.

Walket Royce (2002), stated on some of the

techniques involved with reducing the size or

complexity of the software and improving the

software development process. The main thrust of

process improvements is to improve the results of the

productive activities and minimize the impact of

overhead activities on personnel and schedule.

Magne Jorgensen (2004), in the experiment

conducted indicates that customer expectations have

surprisingly large impact on software development

effort estimates, even when the estimators are told to

disregard this information.

Peterson has discussed the use of systematic mapping,

review and their procedure in software engineering

related areas. While Michael Unterkalmsteiner have

addressed evaluation and measurement of Software

Process Improvement by reviewing 148 papers

published between 1991 and 2008, Magne Jørgensen

and Martin Shepperd carried out a systematic review

on Cost Estimation by reviewing 304 papers

published in 76 journals. Tore Dyba systematically

identified and analyzed all the existing studies on

pair programming. Tracy Hall reviewed studies of

motivation in software engineering published

between 1980 and 2006. Laleh Pirzadeh reviewed 92

studies of motivation in software engineering that

were published in the literature between 1980 and

2006. Moreover the databases used for review were

different from the review (including ACM Digital

library, EI Compendex, Google Scholar, IEEE

Explore, Journal of Systems and Software, etc).

Additionally review had different inclusion and

exclusion criteria such as including conference

proceedings, or conference experience report).

Research in the software development process and

factors that impact the process has been conducted.

Sawyer and Guinan (1998) presented their studies

that described effects on software development

performance due to production methods of software

development and the social processes of how

software developers work together need to be

considered.

Roberts Jr. et al. (1998) identified five factors

important to implementing a system development

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1770

methodology (SDM). Realizing the importance of

factors that influence the software metrics.

Japanese researchers Furuyama (1994, 1997) studied

factors such as working stress, development

methodologies, etc. using design of experiment

methods [18].

V. DIAGNOSING DEVELOPMENT

PERFORMANCE

Software development is a very complex process

which engages human beings, underlying systems,

nature of applications and so on. It is a dynamic

process that differs from project to project. In our

modern society, software has become a very

important component in all kinds of systems and

software failure has become the most crucial factor

that terminates the service and proper function of

the whole system. Therefore, it is very important and

urgent to realize the software development process

and eliminate as many potential problems in

software as possible [11].

Companies aspiring towards better software

development must first understand their starting

points. Beginning any software development

improvement idea with a complete diagnosis give

companies the advantage of rooting their

improvement plan in a deep understanding of their

existing positions.

Ability to attentively address the questions that

underline the fundamental drivers of the software

development success is there behind the

performance of the top companies [20].

What software is being developed?

Companies need to review and prioritize different

feature requirements, scope and need to manage

requirements (including late requirements.). They

should also assess and understand how they set up

the software architecture and system design to drive

efficiency, for example, exploit code reuse and

ensuring a modular software architecture with clear

interfaces and interdependencies [11].

How the software developed?

At the beginning, project planning and efficient

resource management need to be evaluated.

Companies must also review their existing software

methodology and start to see if there are new and

superior processes available to increase productivity,

quality and time to market, for example, by moving

away from traditional waterfall methods to agile

software teams and development teams with

integrated operations expertise [11].

Where is software developed?

The actual location of the development is also

important. Companies must look specially at their

decision to oursource versus develop internally and

the inner workings focused on software development.

software development mediocrity requires careful

analysis. The path towards software development

improvement is highly customized effort, as no two

organizations require the exact same approach [10].

VI.FACTORS INFLUENCING SOFTWARE

DEVELOPMENT PROCESS

A substantial amount of work was carried out to

study the most important factors affecting the

reliability of software development process by

proposing and analysing processes, methods, tools,

and best practices.

There are reviews on reliability factors in software

engineering available in the literature. These works

focus on the main dimensions of the product,

personnel, project, and process. Each of these

dimensions is then characterized by sub-factors:

product is related to a specific characterization of

software, such as domain, requirements, architecture,

code, documentation, interface, size, etc. Personnel

factors involve team member capabilities, experience,

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1771

and motivation. Project factors encompass

management aspects, resource constraints, schedule,

team communication, staff turnover, etc. Process

factors include software methods, tools, customer

participation, software lifecycle, and reuse [13].

Furthermore, any software development effort, even

in the presence of skilled individuals, is likely to be

unsuccessful if it does not explicitly account for how

people work in concert.

A software development environment is a complex

social structure that may dissipate the positive

impact of skilful persons as well as software tools and

methods if team communication and coordination

will be unsuccessful. Factors makes possible team

communication and work coordination are

particularly vital in the context of software

outsourcing. Geographical and, often, mental

distance connecting the concerned parties require

dedicated decision-making activities and

communication services to maintain a acceptable

level of productivity.

For the reason, tools and methods are considered as

human support that amplifies the positive impact of

highly skilled and well-coordinated teams on

development efficiency.

Another most commonly chosen factors prop up the

theory that schedule is not a simple derivative of

project effort.

Several further factors are considered as either

contributing to the quality and volatility of

requirements or moderating the impact of already

instable requirements. Distribution of the project

effort concentrate on the requirements phase as well

as valuable customer participation in the early phases

of the development process are the factors most

commonly thought to increase requirements quality

and stability. Disciplined requirements management

as well as early reviews and inspections on the other

hand, moderate the impact of already instable

requirements. . It seems that the first years of

enthusiasm also brought much disappointment.

VII. ISSUES AFFECTING SOFTWARE

DEVELOPMENT

The successful development and delivery of products

and services points towards company’s ability to

effectively develop quality software. However before

issues can be tackled, development teams need to

know what issues could arise in the development

process. The software development process is

complicated, Proper communication, planning and

testing can help ensure that teams don’t fall victim to

the above problems [19].

 The standards are out there but they’re not

enforced:

There’s a rapid transition in IT with all of the

emerging technologies for emerging companies.

Enterprise companies cannot embrace all the new

technology because it’s risky. It can be complicated

to integrate programming languages and operations

consolidating the new with the old. It is a

challenge ensures users are secure with so many

assets interacts with multiple applications and

platforms. Domain knowledge is necessary. Everyone

needs to be careful about keeping apps up to date and

ensuring they are secure. Compatibility, security,

and assets are challenges.

 Not having a planned process for the entire

SDLC increases waiting and queuing time:

Without processes or enforcement quality is an issue.

Lack of visibility and knowledge lead to uncertainty.

Everyone needs visibility to acquire the knowledge

necessary to work together. Collaboration across

multiple teams and organizations requires the right

mindset. Development team must know the

objectives. While company wants to use latest

technologies then company have to know the end

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1772

goal and determine whether or not the latest

technologies are the best option.

 Time to value is the biggest challenge:

Automate everything to imitate every possible

situation: pre-built model, automated build and tear

down, more complexity with more customization.

 Scope the building design solution and changes

in architectural patterns:

There is a lot of stir up throughout application

development. There are people looking for newer

ways to develop apps.

 Lack of business value and planning:

Companies must have certain attributes before

becoming a great software company. Team needs a

learning culture that’s willing to make mistakes and

perform empirical testing.

 How testing is done:

Make it easier to automate the testing cycle to move

the software through the pipeline more quickly.

Everything needs to be written in a way it can be

automated. Work with customers on end-to-end

processes so they can optimize. Turn an end-to-end

view into an automated process.

 Many companies are still not aware of security

issues:

There are three types of customers:

1) Information security officers who are concerned

about data breaches;

2) CIO’s who is concerned about availability and

uptime, DDOS attacks and ransomware;

3) CFO’s are concerned about fraud.

Development team typically works with the

information security officers to address all three.

There are so many backed-up requirements that all

needs have been prominent to critical. So much of

everything is software overwhelmed with a

throughput of needs. There are not enough people or

companies in technology to meet the needs and this

is resulting in a log jam around the world.

 Cultural – DevOps struggles:

Need to change the state of mind from the scratch to

blame developers responsible for a stable

environment.

 Complexity:

Developers are bombarded with too many options,

frameworks to solve the problem. Companies are

trying to make the lives of software developers easier

– customization is a small part of a complex system.

People don’t know how to optimize the code in all of

the different environments. There is need to be able

to see what is going on in the code and the

frameworks to ensure the application is written and

performing as efficiently as possible.

 Not having the right processes in place.

 Doing Agile wrong, not doing sprints, measuring

velocity, being iterative. Have processes in place to

make it happen. It’s a process with greater rigor.

VIII. CONCLUSION

Software development process is very much

technical. There is a need of proper coordination

among the team members to complete the product

development in time. Development is an in-house

process most of the time and customer satisfaction is

an outdoor process to be managed effectively.

This paper has presented a wide-ranging overview of

the literature and study regarding the common

factors influencing software development. The major

outcome of the study is that the success of software

projects still relies upon humans. The second most

usually considered factors are tool and method. Yet,

tool or method alone are not best factors and cannot

be replaced for highly skilled people and effective

work coordination. Still, Investing in people is

considered more beneficial than investing in tools

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1773

and methods only. The excess of factors that should

be considered to gain the probable benefits from

reuse might enlighten this situation. However, it

must be considered that the analyzed studies

typically vary widely with respect to the

acknowledged factors, their interdependencies, and

their impact on productivity. Therefore, every

organization should think of potential productivity

factors in its own environment (“what is good for

them does not have to necessarily be good for me”).

In addition, since software is recognized as a very

rapidly changing environment, selected factors

should be reviewed and updated regularly. The

particular project data must be collected, analyzed,

and interpreted from the perspective of the stated

productivity objectives. Incompatible measurements

and/or derisory analysis methods may lead to

misleading conclusions about productivity and its

influencing factors. One may say that precise

measurement processes and adequate analysis

methods have a vital impact on productivity,

although indirectly. Therefore, such aspects as clear

definition and quantification of selected factors,

discovery of factor interdependencies, as well as

quantification of their impact on productivity has to

be measured.

IX. REFERENCES

[1] Laleh Pirzadeh, “Human Factors in Software

Development: A Systematic Literature Review”

Goteborg, September 2010

[2] Software development – A practical Approach,

book, Hans-Petter Halvorsen, ISBN 978-82-

691106-0-9

[3] “Basic Issues in Software Engineering Version

2” CSE IIT, Kharagpur.

[4] I. Sommerville, Software Engineering: Pearson,

2010.

[5] E. J. Braude and M. E. Bernstein, Software

Engineering. Modern Approaches, 2 ed.:

Wiley, 2011.

[6] F. Tsui, O. Karam, and B. Bernal, Essentials of

Software Engineering, 3 ed.: Jones & Barlett

Learning, 2014.

[7] Dr.S.K.Nagarajan, Dr. Vanathi Vembar and

K.Anandhan, 2011, “Managerial issues in

software product development”, 3rd

International Conference on Information and

Financial Engineering IPEDR vol.12 , IACSIT

Press, Singapore

[8] Petra C. De Weerd-Nederhofl., “Qualitative

case study research. The case of a PhD research

project on organizing and managing new

product development systems”, Management

Decision, 2001, 39/7, pp 513-538.

[9] Walket Royce., “Improving software

development economics : Reducing Software

product complexity and improving software

processes”, Information Technology, 2002.

May, pp 53-57.

[10] Kai Petersen, Robert Feldt, Shahid Mujtaba and

Michael Mattsson, 2008, “Systematic Mapping

Studies in Software Engineering”, EASE'08

Proceedings of the 12th international

conference on Evaluation and Assessment in

Software Engineering

[11] Software development handbook, 2016

[12] B.W. Boehm, “Improving software

productivity,”

[13] S. Wagner and M. Ruhe, “A structured review

of productivity factors in software

development,” Institut für Informatik,

Technische Universität München, techreport

TUMI0832, 2008.

[14] K.D. Maxwell and P. Forselius, “Benchmarking

software-development productivity,” IEEE

Software, Vol. 17, No. 1, Jan. 2000, pp. 80–88.

[15] M. He, M. Li, Q. Wang, Y. Yang, and K. Ye,

“An investigation of software development

productivity in China,” in International

Conference on Software Process. Springer,

2008, pp. 381–394.

[16] Luigi Lavazza, “An Empirical Study on the

Factors Affecting Software Development

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1774

Productivity”, e-Informatica Software

Engineering Journal, Volume 12, Issue 1, 2018,

pages: 27–49, DOI 10.5277/e-Inf180102

[17] Zhizhong Jiang and Peter Naude, “An

Examination of the Factors Influencing

Software Development Effort”, World

Academy of Science, Engineering and

Technology International Journal of Computer

and Information Engineering Vol:1, No:4, 2007

[18] Tsuneo Furuyama, “Analysis of Factors that

Affect Productivity of Enterprise Software

Projects”,

[19] Tom smith, “Issues Affecting Software

Development Today”,

https://dzone.com/articles/issues-affecting-

software-development-today

[20] Paul Clarke, 2012 “The situational factors that

affect the software development process:

Towards a comprehensive reference

framework”, Journal of Information Software

and Technology, Vol. 54, Issue 5, May 2012.

pp. 433-447

