
CSEIT1831491 | Received : 16 Feb 2018 | Accepted : 27 Feb 2018 | January-February-2018 [(3) 1 : 1960-1966]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 1 | ISSN : 2456-3307

1960

An Overview and Classification of Software Reliability Models
Dilip Sadhankar1, Ashish Sasankar2

1Research Scholar, Department of Electronics & Computer Science, R.T.M. Nagpur University, Nagpur,

Maharashtra, India
2Assocate Professor, Department of Computer Science, G.H. Raisoni Institute of Information Technology,

Nagpur, Maharashtra, India

ABSTRACT

A software quality aspect is measured in terms of mean time to failure or failure intensity of the software. It is

one of the key attributes when talk about software quality. Software quality may parts into quality aspect in

various ways; however, software reliability seen as one of the key attribute of software quality. Software

reliability is a valuable measure in planning and controlling the resources throughout the development

process, as a result, high quality software can be developed. Scheduling and controlling the testing resources

through software reliability measures can be completed by matching the additional cost of testing and the

corresponding improvement in software reliability. It is too, a valuable measure for providing the user

confidence about software correctness. A number of analytical models have been introduced in the past

decades to assess the reliability of the software system. In this paper, researchers are giving an overview &

analysis of software reliability models.

Keywords: Software reliability, Empirical model, Classification, times between failures, Estimation, failure

count models, fault seeding, input domain models, model fitting, NHPP

I. INTRODUCTION

Reliability is usually defined in terms of a statistical

measure; it is the probability to perform failure-

free software operation for a specified period in a

specified environment. The terms related to software

reliability [1, 19].

 Fault: A condition causes the software to fail to

perform its required function.

 Error : It refers to difference between Actual

Output and Expected output

 Failure : It is the inability of a system or

component to perform required function

according to its specification

Software Reliability is difficult to achieve, since the

complexity of software tends to be high. A failure

corresponds to unexpected runtime behavior

noticed/observed by a user of the software. A fault is

a static software attribute, which results in a failure

to occur. Faults need not necessarily results in

failures. They only do so if the faulty component of

the software is used [2].

A standard arrangement is proposed that can be

applied to all phases of software development [4].

 Permanent: failures occur for every single input

values.

 Transient: failures occur only for definite inputs.

 Cosmetic: It may results into slight irritations. Do not

lead to incorrect results.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1961

 Recoverable: When failures take place, the

system recovers with or without operator

intervention.

 Unrecoverable: The system may require to be

restarted.

II. MEASURING SOFTWARE RELIABILITY

Measuring software reliability remains a difficult

problem, as people do not have a good understanding

of the nature of software. Level of reliability needed

for a software should be specified in the SRS

document.

Numbers of models have emerged as people make an

effort to understand the characteristics of how and

why software fails, and try to quantify software

reliability. Over 200 models have been developed

since the early 1970s; however, how to quantify

software reliability remains largely unanswered. Not

a single models completely represent software

reliability [5, 20].

Software modeling techniques can be divided into

two subcategories:

 Prediction modeling

 Estimation modeling.

Both kinds of modeling techniques are based on

observing and collecting failure data and analyzing

with statistical assumption as shown below in table 1.

Two types of uncertainty causes to be any reliability

measurement inaccurate:

 Type 1 uncertainty: Lack of knowledge with

reference to how the system will be used

 Type 2 uncertainty: Reflects lack of knowledge

about the impact of fault removal.

The majority of software models include the

following parts:

 Assumptions,

 Factors,

 A mathematical function

 It relates the reliability with the factors.

 Is typically higher order exponential or

logarithmic

III. CLASSIFICATION OF METHODS

Software reliability models classification is helpful in

comparison of various reliability models. Different

sets of models make it simple to obtain new models,

which are more realistic than the existing ones by

identifying the unrealistic assumptions made for these

existing models. It also help managers/management to

select a group of software reliability models based on

their requirement.

Software Reliability Models can be classified using

two approaches, first based on failure history and the

second based on data requirements [6].

A. Classification Based on Failure History

Based on failure history, the existing software

reliability models grouped into four main classes as

[5]:

 Time Between Failure Models (TBF Models)

 Fault Count Models (FC Models)

 Fault seeding Models (FS Models)

 Input domain based models (IDB Models)

Figure 1 shows the classification of software

reliability models.

1) TBF Models: In this class of models, the process

under study is the time between failures. It is

assumed that the time amid (i-1) th and ith failures

is a random variable, following a distribution

whose parameters depend on the number of

faults residual in the program during this gap.

Estimates of these parameters obtained from the

experimental values of TBFs and then the

parameters of software reliability obtained from

the fitted models.

2) FC Models: In FC Models, the random variable of

significance is the number of faults (failures)

taking place during specified time intervals.

Generally, a Poisson distribution with a time

dependent will be discrete or continuous failure

rate. The time (CPU time or calendar time)

parameters of the failure rate can be projected

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1962

from the observed values of failure counts and

then the software reliability parameters are

obtained from the suitable expression.

3) FS Models: A Program has unknown number of

native faults. Apart from this, a known number

of faults are seeded. The program is tested and

observed number of seeded and native fault. By

the method of MLE and combinatory an estimate

of the fault content of the program prior to

seeding is obtained and then from this value

software reliability parameters are computed.

4) IDB Models: In this modeling approach, number

of test cases generated from the input covers the

operational profile of the input. An estimation of

the reliability of the program is obtained from

the failures observed through execution of the

above sample test cases.

B. Classification Based On Data Requirements:

Based on data requirements the software reliability

models can be divided into two main groups i.e.

Empirical Models and Analytical Models.

1) Empirical Models: An Empirical software

reliability model build up relationship or a set of

relationship among software reliability measures

and a appropriate software metrics such as

program complexity. These relation(s) used for

measurement of software reliability for which

there is need of discovery of the appropriate

software reliability metrics and the development

of the precise type and form of relationships

amid the metrics and reliability measures.

Models of this type are Miranda Model, Hallstead

Model and. Schneider Model.

2) Analytical Models: An analytical model needs

some form of data elicited from software failures.

This is based on fitting of an appropriate

distribution with required assumptions for ease

on a set of data collected while software testing

and prediction of software reliability parameters

from the fitted distribution. Analytical models

can be further subdivided into Static Models and

Dynamic Models based on time dependent

behavior of collected data.

3) Static Models: This type of models, do not

consider the time dependent behavior of

software failures. It can be thought as discrete

time models with one time interval. Depending

on types of data used in the development of the

models, the static models can be further

subdivided into Error Domain Models

(Combinational Model) and Data Domain Models.

4) Error Domain Models: These types of models are

static models developed using different set of

errors. Models in this class are Mills Models,

Lipow Model and Basin Model.

5) Data Domain Models: These types of models are

static models developed with different sets of

input data and observed software failures. Eg.

Nelson Model.

6) Dynamic Models: This type of models represents

the time dependent behavior of software failures.

The Software failure data is collected over a

period. Based on the time interval used, the

Dynamic models are further grouped into

continuous Time Models and Discrete Time

Models.

7) Discrete Time Models: The numbers of failures in

the time intervals or during the stages of testing

are recorded in discrete time models. This

presents a discrete time representation software

failures. The time interval may be fixed or

random and consequently Discrete Time Models

are further subdivided into Fixed Time Interval

and Random Time Interval Models.

8) Random Time Interval D.T. Model: In Random

Time Interval Discrete Time Models, each

interval is a stage in which sequences of tests run

and the numbers of failures recorded. The data

collected are number of test runs, number of

failures and the length of each interval. Eg.

Lapadula Model, Shooman Model.

9) Fixed Time Interval D.T. Models: In Fixed Time

Interval D.T. Models, the time intervals are of

the same length. This type of models also

assumes the number or errors found in different

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1963

time intervals are independent and have Poisson

distribution. Eg. Moranda Geometric Poisson

Model, Schneidewing NHPP Model.

10) Continuous Time Models: An actual software

failure time is the data for this model and

therefore provides a continuous time

representation of software failures. The

continuous time models can be further

subdivided into independently Distributed Inter

failure Times Models (IDT Models) and

Independent and Identical Error Behavior

Models (IIE Models).

11) IDT Models: In this type of models, the inter

failures times (i=1, 2,….m, where m is total

number of failures) is separately distributed and

have similar distribution functions with different

parameters.

12) IIE Models: In this type of Models the inter

failure times are assumed to have the same and

independent probabilistic behavior for each error

Models in this class are Shantikumar Model and

Binomial Model.

Kindly refer table 2 for abbreviation and other

information related with that.

IV. BRIEF INTRODUCTION TO EXISTING

SOFTWARE RELIABILITY MODELS

Software Reliability Models have been proposed on

various assumptions and techniques.. The failure

process is very complex involving interaction of

human factors, program logic and input and output

spaces, which are very hard to put in mathematical

models. However, attempts have been made in the

design of software reliability models to approach to

the real operational environment as possible. More

than 200 software reliability Models were proposed

by the software experts and amid them some

reliability models were discussed below [7-9].

1) Moranda Empirical Model: The software metric

considered by these models is number of

instructions. The empirical formula for the

number of software failures, n, suggested by

Moranda is

 ⁄ ∑

Where m = number of runs

wi = number of instructions exercised in the ith

run.

However, no relationship for number of

remaining errors, N (t) is given [10].

2) Halstead Model: Software metrics considered are

number of operations and operands in program,

measure of effects needed to create a program

and number of mental bias between errors [11].

The empirical relation for number of software

errors, N at the beginning of the test phase is

given by:

 ⁄

 ⁄ ⁄

Where K = Constant,

V = number of bits required to specify a program

& is given by V = Llog2V

L= the total number occurrences of operators and

operands in a program,

v=the number of distinct operators and operands

in the program,

E0=mean number of mental discriminations

between errors and its value is between 3000 to

32000,

E = measure of efforts required to create a

program and is given by E = V/L

l=program level /v

3) Schneider Model: The empirical estimation for

software errors recommended for software

development project is given by [8]

 ⁄

where E(n) = expected number of software

problem reports in the software development

project.

ET = Overall professional effort in”man

months”

s= number of subprograms.

S = Overall count of thousands of coded source

statements of software.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1964

4) Lipow Model: This is modified Mills model by

model taking into consideration the probability q

of finding an error in each of the m tests [8]. If

this probability q is same for both actual and

seeded errors, the probability of detecting n

actual and n seeded errors is given by

P (n, ns) = m Can + ns. q n + ns. (1-q) m-n-ns * NCn. Ns.

Cns / (N + Ns) Cn + ns

N ≥ n ≥ 0; N ≥ ns ≥ 0; M ≥ n + ns ≥ 0

5) Nelson Model: This is a data domain model [7]. It

assumes ,

1. Input profile distribution is known.

2. Random Testing is used.

3. Input domain can be partitioned into equivalent

classes.

Reliability of software calculated by running the

software for a sample of n set of inputs. These n

inputs are selected randomly from N mutually

exclusive input domain subset, Ei, i = 1, 2, 3…N

i.e. each Ei is the set of data values needed to

make a run. The random sampling of n inputs

done in view of that probability distribution, Pi. i

= 1,2,…..N. This set is operational profile or user

input distribution. If n is the number of inputs

that resulted in execution failures then

estimation of software reliability is given by R.

6) Ramamurthy and Bastani Model

This is an Input domain based model [12]. This is

based on critical, real time, process control

program. In such systems, no failures should be

detected during the reliability estimation phase.

So that the reliability

Table 1. classification of modelling

ISSUES PREDICTION MODELS ESTIMATION MODELS

Data Reference Uses historical data
Uses data from the current software

development effort

When used in

Development Cycle

Usually made prior to development or test phases;

can be used as early as concept phase

Usually made later in life cycle(after some

data have been collected); not typically used

in concept or development phases

Time Frame Predict reliability at some future time
Estimate reliability at either present or some

future time

Table 2. Abbreviations for models

Sr. No. Type Model description Example Model

1 TBF Time Between Models
J-M De-Eutrophication, Schnick and Wolverton, Goel and Okumoto

Imperfect Debugging, Littlewood-Verall Bayesian Models

2 FC Fault Count Models

Goel-Okumoto NHPP Model. Generalized Poisson Model, IBM Binomial

and Poisson Models, Musa-Okumoto Logarithmic Poisson Execution Time

Model.

3 FS Fault Seeding Models Mills seeding model, Lipow model, Basin model.

4 IDB
Input Domain based

Models
Nelson Model, Ramamoorthy and Bastani Model.

5 IIE
Identical Error

Behavior Models
Shantikumar Model and Binomial Model

6 IDT

Independently

Distributed inter-

failure models

JM Model, Schick Wolertin Model, Moranda Model and

Goel-Okumoto Model.

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1965

Figure 1. Classification of Reliability models

Figure 2. Software reliability models selection based on Software Development Life Cycle

Volume 3, Issue 1, January-February-2018 | www.ijsrcseit.com | UGC Approved Journal [Journal No : 64718]

 1966

V. CONCLUSION

Software is preset mechanisms that consist of

computer programs, procedures, rules, data and

related documentation. The increase in number of

software failures badly affected the performance of

transportation, Telecommunication, military,

industrial process, entertainment offices, aircrafts

and business. Hence, software reliability has turn out

to be more & more vital. Reliability is the ability of

software to maintain a determine level of

performance during time period. Software reliability

is a measuring technique for defects which causes

software failures in which software behavior is

different from the specified behavior in a defined

environment during fixed time. Based on the review,

the arrangement on software reliability models has

been presented as a major. This Classification is based

on the various dimensions of reliability models. The

key finding of the study is models under review

based on the failure data model and the data

requirements model.

In this paper, we also briefed about the applicability

of these models on different phase of software

development life cycle.

VI. REFERENCES

[1]. Lee, Kyoungwoo, Fault, Failure & Reliability

[2]. Michael R. Lyu, Software Reliability Engineering:

A Roadmap

[3]. John B. Bowen, Standard error classification to

support software reliability assessment

[4]. Zhi Wang, Bing Li and Yutao Ma, "An Analysis of

Research in Software Engineering: Assessment

and Trends"

[5]. Michael R. Lyu, Handbook of software reliability

engineering

[6]. John D. Musa and Kazuhira Okumoto, "Software

Reliability Models: Concepts, Classification,

Comparisons, and Practice", Electronic Systems

Effectiveness and Life Cycle Costing pp 395-423

[7]. A.L. Goel,"Software Reliability Models:

Assumptions, Limitations, and

Applicability",IEEE Transactions on Software,

Volume SE 11,Issue 12,December 1985

[8]. Xie Min - 1991, Software reliability modeling

[9]. Dana Crowe, Design for Reliability

[10]. Z. Jelinski, P. Moranda, SOFTWARE

RELIABILITY RESEARCH

[11]. N.E. Fenton ; M. Neil,"A critique of software

defect prediction models",IEEE Transactions on

Software, Volume: 25 Issue: 5

[12]. C.V. Ramamoorthy ; F.B. Bastani, "Software

Reliability-Status and Perspectives", IEEE

Transactions on Software, Volume: SE-8 Issue: 4

[13]. G.J. Schick ; R.W. Wolverton, "An Analysis of

Competing Software Reliability Models", IEEE

Transactions on Software, Volume: SE-4 Issue: 2

[14]. J.G.Shanthikumar, "A general software reliability

model for performance prediction",

Microelectronics Reliability, Volume 21, Issue 5,

1981, Pages 671-682

[15]. John D. Musa, A theory of software reliability

and its application

[16]. H Pham, Software reliability

[17]. Latha Shanmugam and Dr. Lilly Florence, "An

Overview of Software Reliability Models",

Volume 2, Issue 10, October 2012 ISSN: 2277

128X International Journal of Advanced Research

in Computer Science and Software Engineering

[18]. A. Yadav1 & R. A. Khan, "Critical Review on

Software Reliability", International Journal of

Recent Trends in Engineering, Vol 2, No. 3,

November 2009.

[19]. Jiantao Pan,"Software Reliability",Carnegie

Mellon University 18-849b Dependable

Embedded Systems Spring 1999

[20]. B. Parhami, Defect, Fault, Error,..., or Failure?,

IEEE Transactions on Reliability (Volume: 46,

Issue: 4, Dec 1997)

[21]. Jiantao Pan,"Software Reliability",Carnegie

Mellon University 18-849b Dependable

Embedded Systems Spring 1999

