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ABSTRACT 
 

Transpose form finite-impulse response (FIR) filters are inherently pipelined and support multiple constant 

multiplications (MCM) technique that results in significant saving of computation. However, transpose form 

configuration does not directly support the block processing unlike directform configuration. In this paper, we 

explore the possibility of realization of block FIR filter in transpose form configuration for area-delay efficient 

realization of large order FIR filters for both fixed and reconfigurable applications. Based on a detailed 

computational analysis of transpose form configuration of FIR filter, we have derived a flow graph for transpose 

form block FIR filter with optimized register complexity. A generalized block formulation is presented for 

transpose form FIR filter. We have derived a general multiplier-based architecture for the proposed transpose 

form block filter for reconfigurable applications. A low-complexity design using the MCM scheme is also 

presented for the block implementation of fixed FIR filters. The proposed structure involves significantly less 

area delay product (ADP) and less energy per sample (EPS) than the existing block implementation of direct-

form structure for medium or large filter lengths 

Keywords: 0–1 integer linear programming (ILP), digit-serial arithmetic, finite impulse response (FIR) filters, 

CSE , multiple constant multiplications. 

 

I. INTRODUCTION 

 

FINITE impulse response (FIR) filters are of great 

importance in digital signal processing (DSP) systems 

since their characteristics in linear-phase and feed-

forward implementations make them very useful for 

building stable high-performance filters [1]. These 

are mainly consists of multiplication of a vector of 

input samples with a set of constant coefficients is 

known as MCM operations. 

 

Multiple constant multiplications (MCM) are typical 

operations in digital signal processing (DSP) as well 

as in the design of finite-impulse-response (FIR) 

filters, as shown in Figure 1 (a). 

 

Multiplications are expensive in terms of area and 

power consumption, when implemented in hardware. 

The relative cost of an adder and a multiplier in 

hardware, depends on the adder and multiplier 

architectures. For example, a k x k array multiplier 

has k times the logic (and area) and twice the latency 

of the slowest ripple carry adder. Since the values of 

the coefficients are known beforehand, the full 

flexibility of a multiplier is not necessary, and it can 

be more efficiently implemented by converting it 

into a sequence of additions/subtractions and shift 

operations are shown in figure 1 (b). 

 
   Figure 1(a). A multiplier-based MCM example 
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  Figure 1(b). A multiplierless-based MCM example 

 

For the shift-adds implementation of constant 

multiplications, a straightforward method, generally 

known as digit based recoding [2], initially defines 

the constants in binary. Then, for each “1” in the 

binary representation of the constant, according to 

its bit position, it shifts the variable and adds up the 

shifted variables to obtain the result. As a simple 

example, consider the constant multiplications 29x 

and 43x. Their decompositions in binary are listed as 

follows:      

 

29x = (11101)binx = x<<4 + x<<3 + x<<2 + x 

43x =(101011)binx = x<<5 + x<<3 + x<<1 + x 

Which requires six addition operations as illustrated 

in Fig.2 (a)  

 
Figure  2. Shift-adds implementations of 29x and 43x. 

(a) Without partial product sharing [2] and with 

partial product sharing. (b) Exact CSE algorithm [5]. 

(c) Exact GB algorithm [6]. 

  

The algorithms designed for the MCM problem can 

be categorized in two classes: common sub 

expression elimination (CSE) algorithms [3]–[5] and 

graph-based (GB) algorithm [6]–[8]. 

The proposed algorithm that optimally solves this 

maximal sharing problem. This problem has been the 

subject of extensive research in recent years. Two 

key strategies have had a large impact in the 

optimization of MCMs. One is to consider not only 

adders, but also subtracter to combine partial terms, 

thus increasing the opportunity for the sharing of 

common sub expressions. 

 

The second is the usage of the Canonical Sign Digit 

(CSD) representation for the coefficients. This 

representation minimizes the number of non-zero 

digits; hence the maximal sub expression sharing 

search starts from a minimal level of complexity. 

 

In a recent paper, Park [9] propose the usage of a 

Minimal Signed Digit (MSD) representation for the 

coefficients. The MSD representation is obtained 

from the CSD representation by relaxing the 

requirement that there cannot be two consecutive 

non-zero digits. Under the MSD representation, a 

given numerical value can have multiple 

representations. However, in all of them, the number 

of non-zero digits is the same as the CSD 

representation. The algorithm proposed in [9] 

exploits the redundancy of the MSD representation 

by choosing the MSD instance that leads to a 

maximal sharing in the implementation of efficient 

FIR filters. 

 

To the best of our knowledge, all previous solutions 

to this problem have been heuristic, providing no 

indication as to how far from the optimum their 

solution is. We propose an exact algorithm that is 

feasible for many real situations. We model this 

problem as a Boolean network that covers all possible 

partial terms which may be used to generate the set 

of coefficients in the MCM instance. The inputs to 

this network are shifted versions of the value that 

serves as input to the MCM operation. Each adder 

and subtracter used to generate a given partial term is 

represented as an AND gate. All partial terms that 

represent the same numerical value are ORed 

together. There is a single output which is an AND 
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over all the coefficients in the MCM. We cast this 

problem into a 0-1 Integer Linear Programming (ILP) 

problem by requiring: that the output is asserted, 

meaning that all coefficients are covered by the set of 

partial terms found; while minimizing the total 

number of AND gates that evaluate to one, i.e., the 

number of adders/subtracters.  

 

We have applied this algorithm to coefficients 

represented in binary, CSD and MSD representations. 

Note that the redundancy of the MSD representation 

can be readily incorporated in our model, where the 

equivalent MSD representations are simply new 

inputs to the OR gate that generates a given 

coefficient. 

 

Returning to our example in Figure 2, the exact CSE 

algorithm of [9] gives a solution with four operations 

by finding the most common partial products 3x = 

(11)binx and 5x = (101)binx when constants are 

defined under binary, as illustrated in Fig. 2(b). On 

the other hand, the exact GB algorithm [6] finds a 

solution with the minimum number of operations by 

sharing the common partial product 7x in both 

multiplications, as shown in Fig. 2(c). Note that the 

partial product 7x = (111)binx cannot be extracted 

from the binary representation of 43x in the exact 

CSE algorithm [5]. 

 

II. DIGIT-SERIAL ARITHMETIC 

 

In digit-serial arithmetic, data words are divided into 

digits, with a digit size of d bits, which are processed 

in one clock cycle. The special cases of the digit-

serial computation, called bit-serial and bit-parallel 

processing, occur when the digit size d is equal to 1 

and input data word length, respectively. The digit-

serial computation plays an important role when the 

bit-serial implementations cannot meet delay 

requirements and the bit-parallel designs require 

excessive hardware. Thus, an optimal tradeoff 

between area and delay can be obtained by changing 

the digit size parameter (d). The fundamental digit-

serial operations were introduced in [8]. The digit-

serial addition, subtraction, and left shift operations 

are depicted in Figure 3 when d is equal to 3. Notice 

from Figure 3(a) that in a digit-serial addition 

operation, in general, the number of required full 

adders (FAs) is equal to d and the number of 

necessary D flip-flops is always 1. The subtraction 

operation (Figure 3(b)) is implemented using 2’s 

complement, requiring the initialization of the D 

flip-flop with 1 and additional d inverter gates with 

respect to the digit-serial addition operation. 

 

   
Figure 3: The digit-serial operations when d is 3: (a) 

addition operation; (b) subtraction operation; (c) left 

shift by 2 times;(d)left shift by 4 times.  

 
Figure 4. Bit-serial realization of shift-adds 

implementation of 29x and 43x given in Figure 2(c). 

 

As an example on digit-serial realization of constant 

multiplications under the shift-adds architecture, 

Figure 4 illustrates the bit-serial implementation of 

29x and 43x obtained by the exact GB algorithm [2] 

given in Figure 2(c). The network includes 2 bit 

serial additions, 1 bit-serial subtraction, and 5 D flip-

flops for all the left shift operations. Observe from 

Figure 4 that at each clock cycle, one bit of the input 

data x is applied to the network input and one bit of 



Volume 2, Issue 6, November-December-2017 | www.ijsrcseit.com | UGC Approved Journal [ Journal No : 64718 ] 

 
 1347 

the constant multiplication output is computed. Note 

that the digit-serial design of the MCM operation 

occupies significantly less area when compared to its 

bit-parallel design and the area of the design is not 

dependent on the bit-width of the input data. 

However, the latency of the MCM computation is 

increased due to the serial processing. Suppose that x 

is a 16-bit input value. To obtain the actual output of 

29x and 43x in the bit-serial network of Figure 4, 21 

and 22 clock cycles are required respectively. Thus, 

necessary bits must be appended to the input data x, 

i.e., 0s, if x is an unsigned input or sign bits, 

otherwise. Moreover, in the case of the conversion of 

the outputs obtained in digit-serial to the bit parallel 

format, storage elements and control logic are 

required. 

 

Note that while the sharing of addition/subtraction 

operations reduces the complexity of the digit-serial 

MCM design (since each addition and subtraction 

operation requires a digit-serial operation), the 

sharing of shift operations for a constant 

multiplication reduces the number of D flip-flops, 

and consequently, the design area. Observe from 

Figure 4 that two D flip-flops cascaded serially to 

generate the left shift of 7x by two can also generate 

the left shift of 7x by one without adding any 

hardware cost. 

 

The exact CSE algorithms that formalize the MCM 

problem as a 0–1 ILP problem were introduced in [23] 

and [24]. In these algorithms, the target constants are 

defined under a number representation and all 

possible implementations of constant multiplications 

are extracted from the representations of constants. 

The problem reduction and model simplification 

techniques for the exact CSE algorithms were 

presented in [9].  

 

The exact GB algorithms that search for a solution 

with the minimum number of operations in breadth-

first and depth-first manners were introduced in [12]. 

Efficient GB algorithms that includes two parts, i.e., 

optimal and heuristic, were introduced in [10]–[12]. 

In their optimal parts, each target constant that can 

be implemented with a single operation is 

synthesized. If there exist unimplemented elements 

left in the target set, 

 

Then they switch to their heuristic parts where the 

required intermediate constants are found. The 

RAG-n algorithm [10] initially chooses a single 

unimplemented target constant with the smallest 

single coefficient cost evaluated by the algorithm  

and then synthesizes it with a single operation 

including one(two) intermediate constant(s) that 

has(have) the smallest value in its heuristic part. The 

Hcub algorithm [11] selects a single intermediate 

constant that yields the best cumulative benefit over 

all unimplemented target constants for the 

implementation of each target constant. The 

approximate algorithm [12] computes all possible 

intermediate constants that can be synthesized with 

the current set of implemented constants using a 

single operation and chooses the one that leads to the 

largest number of synthesized target constants. For 

the MCM-DS problem, the GB algorithms based on 

RAG-n were introduced. The RSAG-n algorithm 

chooses the intermediate constant(s) that require the 

minimum number of shifts. The RASG-n algorithm  

selects the intermediate constant(s) with the 

minimum cost value as done in RAG-n, but if there 

are more than one possible intermediate constant, it 

favors the one that requires the minimum number of 

shifts. 

III. SIMULATION RESULTS 

 

GB algorithm can be applied for any coefficient pair 

combinations. Hence GB algorithm is used and 

number of operations is reduced drastically than 

other algorithms. 
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Figure 5. Output for FIR filter with digit based 

recoding algorithm 

 

Four filter coefficient 29,43,59,89 values are taken for 

digit serial FIR filter design. X(n) is taken as a input 

sequence and Y(n) is taken as output sequence. 

 
Figure 6. Output for FIR filter with CSE algorithm 

 

Figure 5 shows 4 tap FIR filter with without partial 

product sharing (Digit based recoding) algorithm and 

Figure 6 displays 4 tap filter with CSE algorithm. 

 
Figure 7.  Output for FIR filter with GB algorithm 

 

Figure 7 displays 4 tap filter with GB algorithm. This 

simulation result was displayed by modelsim 

software. These are the simulation results displayed 

by modelsim software.  

 

3.1. FIR FILTER DEVICE UTILIZATION REPORT 

Table 1. Delay and Gate Count Comparison 

FIR Filter Delay Device 

Utilization 

Normal 

method 

14.203 323 

CSE 

Algorithm 

15.528 321 

GB Algorithm 12.875 299 

 

IV. CONCLUSION 

 

Thus the implementation of digit serial FIR filter was 

implemented with low complexity MCM 

architectures using GB algorithm. Device utilization 

and delay values are compared for hardware 

implementation. Hence this MCM approach 

drastically reduces the system complexity, area and 

delay and FPGA hardware real time implementation 

has performed with spartan3 version. Future 

enhancement of this paper is to design MCM 

architecture with more coefficient pairs for FIR filter 

implementation. 
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