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ABSTRACT 

 

Web applications are the most prevalent applications of today‟s technology. They are typically characterized by 

IT resource requisites that fluctuate with usage, predictably or unpredictably. Failure to respond will impact 

customer satisfaction. Autoscaling is a feature of cloud computing that has the ability to scale up the cloud 

resources according to demand. It provides better availability, cost and fault tolerance. In the existing scenario, 

reactive autoscaling is used where the system reacts to changes and scale up the resources when there is a 

demand. The proposed system uses predictive autoscaling approach to predict future resource requisites in 

order to ascertain adequate resource are available ahead of time. The system uses a deep learning technique 

termed Recurrent Neural Network with Long Short Term Memory (RNN-LSTM) to predict the future demand 

based on the historical data. The predicted result is integrated with an OpenStack open source cloud platform to 

perform predictive autoscaling. 
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I. INTRODUCTION 

 
Web applications play a major role in today‟s 

technology [1]. They may encounter different 

workload at different time, automatic resource 

provisioning needs to work efficiently and effectively. 

In fact, many commercial cloud services need to 

respond user requests quickly without interruption. 

It becomes an important issue for cloud services to 

process a large number of user requests in time. For 

example, a cloud service may use one VM to handle 

user requests. At some point of time, the number of 

requests could increase so quickly that the VM 

becomes overloaded. If the cloud platform can 

automatically detect such an issue, it can then 

dynamically add another VM to share the workload. 

This approach usually refers to autoscaling. 

 

The most common scheme for auto-scaling is the 

reactive autoscaling approach. That is, when a cloud 

service is overloaded, the cloud platform that hosts 

the cloud service will trigger an instance only when 

it hits the threshold value. The other scheme for 

auto-scaling is to employ a predictive approach that 

predicts future workload and spins the instance 

accordingly. With this type of approach, the key for 

efficient autoscaling relies on how near the 

prediction mechanism can predict the future 

workload. In club to reach a good prediction result, 

the autoscaling mechanism can utilize a deep 

learning technique, which looks at the history of 

workload and then foresee the future workload. 

Then an autoscaling mechanism increases the 

number of virtual resources according to the 

prediction result.  
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Auto-scaling provides very good benefits, but 

implementation is not a facile and straightforward 

task. It needs the capacity to accurately foresee 

future workload and also should figure the right 

number of resources required for the expected 

increase in workload. A rapid spike in demand, 

Outages and Variable traffic pattern where different 

times of the day have different workload are issues in 

web applications [2].  However, if the thresholds are 

not defined opportunely, the system may not work 

smoothly enough. For example, a threshold is 

defined to be 60% of CPU usage for adding VMs in a 

scheme. Postulate that actual CPU utilization keeps 

changing from 55% to 65%. In this case, the system 

may keep adding VMs, and could hurt the quality of 

service. This implies that, the reactive approach may 

not be enough, it is indispensable to employ 

workload prediction in an autoscaling mechanism of 

a cloud platform. A reactive method is also used to 

reduce the impact of wrong workload prediction in 

order to obviate the case that the predicted result is 

not accurate enough.   

 

At present days there are many web applications can 

make benefit from automatic scaling property of the 

cloud where the number of resource usage can be 

scaled up dynamically by the cloud service platform 

[3]. So here, present system provides a predictive 

autoscaling approach for web application by using a 

deep learning technique called Recurrent Neural 

Network- Long Short Term Memory. The predicted 

result is integrated with an OpenStack open source 

cloud platform. The rest of the paper is structured as 

follows. In Section 2 overviews related work in the 

area of automatic resource scaling. In Section 3 

describes the proposed method for autoscaling. 

Section 4 shows the result analysis. Conclusively, 

Section 5 concludes. 

 

II. RELATED WORK 

Many cloud vendors like Amazon [4], Azure [5] 

offers auto-scaling as a commonly desired feature in 

cloud IaaS and PaaS but provides pay-per-use 

services. In recent years, many studies began to use 

different methods for workload prediction on cloud 

platforms. 

 

Jianyu Sun et al [6] apply ARIMA based prediction 

time series prediction method for predictive strategy 

and threshold-based metric for checking reactive 

strategy. ARIMA works well for short-term 

prediction and gives more importance to immediate 

data points. Similarly, Raouia Bouabdallah et al 

propose an automatic resource provision based on a 

workload prediction by Simple Exponential 

Smoothing method in [7]. It was implemented on the 

Open Nebula Cloud Platform. 

 

Jingqi Yang et al [8] apply Linear Regression Model 

(LRM) and Auto Regressive Moving Average (ARMA) 

based prediction methods for automatic scaling in 

service clouds. For autoscaling web applications in 

heterogeneous cloud infrastructure Hector 

Fernandez et al [9] used  Linear Regression for linear 

trends, Auto Regression Moving Average (ARMA) 

for linear with small oscillations, Exponential 

Smoothing Holt-Winters for daily and seasonal and 

Autoregression and Vector Autoregression for 

correlated trends. 

 

Nilabja Roy et al [10] used ARMA, Mean Value 

Analysis (MVA) and Look-ahead resource allocation 

algorithms for efficient autoscaling in the cloud for 

workload forecasting. Similarly, for modelling the 

autoscaling operations in cloud with time-series data 

Mehran N. A. H. Khan et al [11] used Exponential 

Smoothing and Markov chain model.  Time series 

data are dynamic in nature; it fails to meet when 

there is the non-linear co-relation between the past 

and current data points. 

 

Martin Duggan et al [12] applied Simple RNN 

method for predicting the CPU utilization accurately 

for short time periods. It fails to meet if there is a 

sudden change in CPU utilization. The above 

methods for workload prediction is used only for 

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nilabja%20Roy.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mehran%20N.%20A.%20H.%20Khan.QT.&newsearch=true


Volume 3, Issue 3 | March-April-2018  |   http:// ijsrcseit.com  

 

E.G.Radhika  et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946 

 
1942 

short-term prediction incase if there is large 

variation in the data points it fails to predict 

accurately. When compared to these time-series 

techniques, Recurrent Neural Network- Long Short 

Term Memory deep learning technique is used to 

predict the future workload accurately in case of any 

variance because it can remember the historical 

values.  

III. THE PROPOSED METHOD FOR 

AUTOSCALING 

 

The Figure 1 shows the overall framework of the 

proposed method for Autoscaling using Recurrent 

Neural Network- Long Short Term Memory on 

OpenStack Cloud Platform. The framework of the 

proposed method is depicted in three phases. The 

first phase describes the real-time data collection 

from OpenStack. The second phase describes the 

workload predictor using a deep learning technique 

and the final phase is about Autoscaling on 

OpenStack. 

 

 
 

Figure 1. Overall Framework of Proposed Method 

 

A. Data Collection from OpenStack 

The number of user requests hits the same web 

server, let‟s consider the cloud service use only one 

VM (web server) to handle user requests. At some 

point of time, the number of users gradually 

increases the server becomes overloaded and the 

CPU and RAM utilization gets increased. To collect 

those metrics Telegraf, InfluxDb and Grafana [13] 

components are setup on OpenStack. 

Telegraf is a plugin-driven server agent for collecting 

and reporting metrics. This can collect data from a 

wide variety of sources. Telegraf is maintained by 

InfluxData. It has a good support for indicting data to 

InfluxDB. InfluxDB is a data store for any utilization 

case involving large amounts of time-stamped data. 

Grafana is the open platform for resplendent 

analytics and monitoring. It makes it facile to create 

dashboards for displaying data from many sources, 

particularly time-series data. 

 

OpenStack uses InfluxData‟s InfluxDB to monitor the 

OpenStack infrastructure. InfluxDB is utilized to 

store and query the OpenStack infrastructure metrics 

time series that are collected at the OpenStack 

infrastructure level. The data is visualized in 

graphical format in Grafana Dashboard. The data can 

be exported in CSV, XSL or JSON format from 

Grafana Dashboard. 

  

B. Workload Prediction 

The data exported from the Grafana dashboard are 

given as an input to workload prediction. Auto-

scaling actions are performed beforehand by 

predicting the future resource demand. Predictive 

approach address the rapid spike demand, outages 

and variable traffic pattern issues. Compared to time-

series techniques, the Neural Network method gives 

better results for anticipating the future workload. 

The drawback is, it cannot remember events if there 

is a very long and variant time lags between events. 

To amend memorization of the standard feedforward 

neural network, Recurrent neural network (RNN) is 

utilized.  

 

RNN is a densely packed Neural Network connecting 

multiple hidden layers with recurrent connections.  

A hidden layer nodes are connected in a loop and it 

serves to maintain the memory between the states. 

The hidden layer in RNN known as Long Short Term 

Memory (LSTM), which is utilized to remember past 

values (events).  It is utilized to predict the 

CPU/RAM utilization of the VMs with greater 
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accuracy when compared to traditional approaches. 

Based on the prediction, predictive autoscaling is 

done by provisioning the instances ahead before the 

server exceeds a given workload threshold. Effective 

for long-term prediction and provides better results 

when there is a non-linear correlation between past 

and current values. The predicted result of Long 

Short Term Memory Recurrent Neural Network 

method is to be integrated on OpenStack. 

 

C. Autoscaling on OpenStack  

The predicted result is stored in the Swift component. 

Swift is an Object Storage component in OpenStack 

which stores data at large scale with high availability. 

The data from the Swift is pulled to create a template 

to trigger an instance by using Terraform [14]. A 

Terraform is a tool developed by HashiCorp that can 

be utilized to deploy and manage cloud infrastructure 

facilely by defining configuration files. It is akin to 

OpenStack Heat. Heat which is specific to OpenStack, 

Terraform is provider agnostic and can work with 

multiple cloud platforms such as OpenStack, AWS 

and VMware.  

 

Users define configuration files that Terraform 

processes to create and manage infrastructure 

resources across multiple cloud providers. It 

generates an execution plan describing what it will 

do to reach the desired state, and then executes it to 

build the described infrastructure. As the 

configuration changes, Terraform is able to 

determine what transmuted and create incremental 

execution plans which can be applied. Terraform 

configuration files are saved as .tf files. Resources 

represent infrastructure components, e.g. server, 

virtual machine, container, network port.  

 

The configuration file contains the details about the 

provider that is OpenStack and the resource to be 

created. Once the configuration file is created, the 

three main terraform commands are executed to 

create an instance based on configuration file [15]. 

The terraform commands are terraform init to 

initialize a Terraform working directory, terraform 

plan to generate and shows an execution plan and 

terraform apply for building or changing the 

infrastructure, i.e. creates a resource based on 

execution plan.  

 

IV. IMPLEMENTATION 

 

The Figure 2 shows the flow of proposed work and 

the corresponding implementation results. The 

proposed RNN-LSTM method has been implemented 

in python using Keras libraries for predicting the 

future workload. Based on the predicted result a 

predictive autoscaling is done on an OpenStack 

Mirantis version. OpenStack is setup by using five 

physical machines. Each machine has Intel® Core™ 

i5-6500, 8 GB RAM and 64 bit OS. A virtual cluster 

that is OpenStack cluster is created consisting of 

several VMs. An Apache Web Server and Telegraf 

are deployed in one VM. Similarly, InfluxDb and 

Grafana is deployed in another VM. When the user 

requests hits the Apache web server, the Telegraf 

monitors the metrics. InfluxDb continuously stores 

the data monitored by Telegraf and Grafana 

visualizes the metrics. The .csv file collected from 

Grafana contains 24 hours with two months of real-

time data that is from 00:00:00 January 1, 2018 to 

23:59:00 January 31, 2018 and from 00:00:00 

February 1, 2018 to 23:59:00 February 28, 2018. The 

Figure 3 shows the dataset collected from Grafana. 

The dataset is given as input to Long Short Term 

Memory Recurrent Neural Network. This deep 

learning technique is used to predict the future 

workload.  

 

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/


Volume 3, Issue 3 | March-April-2018  |   http:// ijsrcseit.com  

 

E.G.Radhika  et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946 

 
1944 

 
Figure 2. Flow Diagram of Proposed Method. 

 

 
Figure 3. Dataset collected from Grafana dashboard 

 

The steps to implement Recurrent Neural Network is 

shown in figure 4.  

 
Figure 4. Steps to Implement Recurrent Neural 

Network 

First the input dataset is split into 60% for training 

and 40% for testing. The training dataset is 

preprocessed by using MinMaxScaler. Keras libraries 

are imported to build the Recurrent Neural Network 

(RNN). RNN can be called as a regressor because 

prediction is done by regressor, not by classification. 

The input and Long Short Term Memory (LSTM) 

layer which is a hidden layer are added using sigmoid 

activation. The output layer will return the predicted 

values. After adding the layers, the network is 

compiled using Adam optimizer. The Adam 

Optimizer gives better result compared to other 

optimizer. The loss is calculated using Mean Squares 

Error (MSE) and Mean Absolute Error (MAE) where 

MSE and MAE is 0.003. Finally, the network is fit to 

the normalized training dataset. To test the network 

that is built, the testing dataset is compared with the 

build model and the future prediction is done using 

predict() function. The figure 5 shows the future 

predicted result. The predicted result is stored in the 

Swift component on OpenStack.  The result is pulled 

from Swift and a template is created as shown below: 

 

Template to trigger an Instance 

 

 Input: Predicted Results (Time and CPU_Utilization) 

 Output: Aw32n Instance is deployed in OpenStack 

 Begin: 

if Time = = Current_Time 

   if CPU_Utilization >= 60% 

Invoke Configuration file    

from Terraform to deploy an 

Instance. 

                 endif 

             endif 
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Figure 5. Future Prediction using Recurrent Neural Network- Long Short Term Memory 

 

 

To perform predictive autoscaling, the threshold 

value is set at 60%. Based on the predicted result, the 

Time is compared with current time and the CPU 

Utilization is checked whether it is greater than or 

equal to 60%. If the condition is satisfied, then the 

configuration file named Stack.tf for deploying an 

Instance is invoked from Terraform as shown below:  

 

          Stack.tf configuration file 

  

# Configure the OpenStack provider 

 provider “openstack” { 

 user_ name = “admin” 

 password = “pwd” 

 auth_url = “http://10.1.1.60.13:8000/v2.0” 

 region = “RegionOne” 

 } 

 # Create an Instance 

 resource = “openstack_compute_instance_v2”     

“instance1”{ 

 name = “instance1” 

 image_id = “2e0754d7-41j0-7665-4343ade” 

 flavor_id = “3” 

 key_pair = “mykey” 

 security_groups = [“default”] 

 metadata { 

  this = “that” 

 } 

 network { 

  name = “my_Network” 

 } 

 } 

In Stack.tf configuration file, the provider is 

openstack which includes the following arguments. 

The user_name and password is to login with. 

auth_url is used as identity authentication url. 

RegionOne is a region in which OpenStack uses to 

create an instance.  

 

To create an instance, a unique name for the resource 

is given as “instance1”. Image_id, flavor_id and 

key_pair are given in the OpenStack to create desired 

instance. Metadata refers to metadata key/value pair 

to make available from within the instance. The 

network used is „my_ Network‟ that provides the 

network connectivity to the instance.  

 

Using Terraform init, plan and apply commands an 

instance is deployed on OpenStack. The template is 

run for every five minutes and the average of next 10 

data points is taken. If it is above 60%, for example 

the CPU Utilization is above 60% from 09:49:00 to 

10:49:00. The VM is kept active for 1 hour otherwise 

the Terraform may keep adding the VMs for every 

time period having high utilization which will hurt 

the quality of service. In case if the prediction is false 

that is a wrong workload prediction then reactive 

autoscaling is done after meeting the threshold value.  

 

V. CONCLUSION 

 

In this paper, Recurrent Neural Network- Long 

Short Term Memory (RNN-LSTM) is used to 

predict the future workload. Based on the result, 
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the predictive autoscaling is done on OpenStack 

by triggering an instance using Terraform. The 

proposed system also adopts reactive autoscaling 

approach in order to prevent negative impact of 

wrong prediction. The results shows that, when the 

massive workload arrives, the proposed system 

predicts the future demand and spins the instance 

accordingly. 
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