
CSEIT1833498 | Received : 20 April 2018 | Accepted : 30 April 2018 | March-April-2018 [(3) 3 : 1940-1946]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1940

A RNN-LSTM based Predictive Autoscaling Approach on

Private Cloud
E. G. Radhika*1, G. Sudha Sadasivam2, J. Fenila Naomi3

1Department of Information Technology, PSG College of Technology, Coimbatore, Tamilnadu, India
2Department of Computer Science and Engineering, PSG College of Technology, Coimbatore, Tamilnadu, India

3Department of Information Technology, PSG College of Technology, Coimbatore, Tamilnadu, India

ABSTRACT

Web applications are the most prevalent applications of today‟s technology. They are typically characterized by

IT resource requisites that fluctuate with usage, predictably or unpredictably. Failure to respond will impact

customer satisfaction. Autoscaling is a feature of cloud computing that has the ability to scale up the cloud

resources according to demand. It provides better availability, cost and fault tolerance. In the existing scenario,

reactive autoscaling is used where the system reacts to changes and scale up the resources when there is a

demand. The proposed system uses predictive autoscaling approach to predict future resource requisites in

order to ascertain adequate resource are available ahead of time. The system uses a deep learning technique

termed Recurrent Neural Network with Long Short Term Memory (RNN-LSTM) to predict the future demand

based on the historical data. The predicted result is integrated with an OpenStack open source cloud platform to

perform predictive autoscaling.

Keywords: Web applications, Autoscaling, Recurrent Neural Network, Long Short Term Memory, OpenStack

I. INTRODUCTION

Web applications play a major role in today‟s

technology [1]. They may encounter different

workload at different time, automatic resource

provisioning needs to work efficiently and effectively.

In fact, many commercial cloud services need to

respond user requests quickly without interruption.

It becomes an important issue for cloud services to

process a large number of user requests in time. For

example, a cloud service may use one VM to handle

user requests. At some point of time, the number of

requests could increase so quickly that the VM

becomes overloaded. If the cloud platform can

automatically detect such an issue, it can then

dynamically add another VM to share the workload.

This approach usually refers to autoscaling.

The most common scheme for auto-scaling is the

reactive autoscaling approach. That is, when a cloud

service is overloaded, the cloud platform that hosts

the cloud service will trigger an instance only when

it hits the threshold value. The other scheme for

auto-scaling is to employ a predictive approach that

predicts future workload and spins the instance

accordingly. With this type of approach, the key for

efficient autoscaling relies on how near the

prediction mechanism can predict the future

workload. In club to reach a good prediction result,

the autoscaling mechanism can utilize a deep

learning technique, which looks at the history of

workload and then foresee the future workload.

Then an autoscaling mechanism increases the

number of virtual resources according to the

prediction result.

http://ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

E.G.Radhika et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946

1941

Auto-scaling provides very good benefits, but

implementation is not a facile and straightforward

task. It needs the capacity to accurately foresee

future workload and also should figure the right

number of resources required for the expected

increase in workload. A rapid spike in demand,

Outages and Variable traffic pattern where different

times of the day have different workload are issues in

web applications [2]. However, if the thresholds are

not defined opportunely, the system may not work

smoothly enough. For example, a threshold is

defined to be 60% of CPU usage for adding VMs in a

scheme. Postulate that actual CPU utilization keeps

changing from 55% to 65%. In this case, the system

may keep adding VMs, and could hurt the quality of

service. This implies that, the reactive approach may

not be enough, it is indispensable to employ

workload prediction in an autoscaling mechanism of

a cloud platform. A reactive method is also used to

reduce the impact of wrong workload prediction in

order to obviate the case that the predicted result is

not accurate enough.

At present days there are many web applications can

make benefit from automatic scaling property of the

cloud where the number of resource usage can be

scaled up dynamically by the cloud service platform

[3]. So here, present system provides a predictive

autoscaling approach for web application by using a

deep learning technique called Recurrent Neural

Network- Long Short Term Memory. The predicted

result is integrated with an OpenStack open source

cloud platform. The rest of the paper is structured as

follows. In Section 2 overviews related work in the

area of automatic resource scaling. In Section 3

describes the proposed method for autoscaling.

Section 4 shows the result analysis. Conclusively,

Section 5 concludes.

II. RELATED WORK

Many cloud vendors like Amazon [4], Azure [5]

offers auto-scaling as a commonly desired feature in

cloud IaaS and PaaS but provides pay-per-use

services. In recent years, many studies began to use

different methods for workload prediction on cloud

platforms.

Jianyu Sun et al [6] apply ARIMA based prediction

time series prediction method for predictive strategy

and threshold-based metric for checking reactive

strategy. ARIMA works well for short-term

prediction and gives more importance to immediate

data points. Similarly, Raouia Bouabdallah et al

propose an automatic resource provision based on a

workload prediction by Simple Exponential

Smoothing method in [7]. It was implemented on the

Open Nebula Cloud Platform.

Jingqi Yang et al [8] apply Linear Regression Model

(LRM) and Auto Regressive Moving Average (ARMA)

based prediction methods for automatic scaling in

service clouds. For autoscaling web applications in

heterogeneous cloud infrastructure Hector

Fernandez et al [9] used Linear Regression for linear

trends, Auto Regression Moving Average (ARMA)

for linear with small oscillations, Exponential

Smoothing Holt-Winters for daily and seasonal and

Autoregression and Vector Autoregression for

correlated trends.

Nilabja Roy et al [10] used ARMA, Mean Value

Analysis (MVA) and Look-ahead resource allocation

algorithms for efficient autoscaling in the cloud for

workload forecasting. Similarly, for modelling the

autoscaling operations in cloud with time-series data

Mehran N. A. H. Khan et al [11] used Exponential

Smoothing and Markov chain model. Time series

data are dynamic in nature; it fails to meet when

there is the non-linear co-relation between the past

and current data points.

Martin Duggan et al [12] applied Simple RNN

method for predicting the CPU utilization accurately

for short time periods. It fails to meet if there is a

sudden change in CPU utilization. The above

methods for workload prediction is used only for

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Nilabja%20Roy.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mehran%20N.%20A.%20H.%20Khan.QT.&newsearch=true

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

E.G.Radhika et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946

1942

short-term prediction incase if there is large

variation in the data points it fails to predict

accurately. When compared to these time-series

techniques, Recurrent Neural Network- Long Short

Term Memory deep learning technique is used to

predict the future workload accurately in case of any

variance because it can remember the historical

values.

III. THE PROPOSED METHOD FOR

AUTOSCALING

The Figure 1 shows the overall framework of the

proposed method for Autoscaling using Recurrent

Neural Network- Long Short Term Memory on

OpenStack Cloud Platform. The framework of the

proposed method is depicted in three phases. The

first phase describes the real-time data collection

from OpenStack. The second phase describes the

workload predictor using a deep learning technique

and the final phase is about Autoscaling on

OpenStack.

Figure 1. Overall Framework of Proposed Method

A. Data Collection from OpenStack

The number of user requests hits the same web

server, let‟s consider the cloud service use only one

VM (web server) to handle user requests. At some

point of time, the number of users gradually

increases the server becomes overloaded and the

CPU and RAM utilization gets increased. To collect

those metrics Telegraf, InfluxDb and Grafana [13]

components are setup on OpenStack.

Telegraf is a plugin-driven server agent for collecting

and reporting metrics. This can collect data from a

wide variety of sources. Telegraf is maintained by

InfluxData. It has a good support for indicting data to

InfluxDB. InfluxDB is a data store for any utilization

case involving large amounts of time-stamped data.

Grafana is the open platform for resplendent

analytics and monitoring. It makes it facile to create

dashboards for displaying data from many sources,

particularly time-series data.

OpenStack uses InfluxData‟s InfluxDB to monitor the

OpenStack infrastructure. InfluxDB is utilized to

store and query the OpenStack infrastructure metrics

time series that are collected at the OpenStack

infrastructure level. The data is visualized in

graphical format in Grafana Dashboard. The data can

be exported in CSV, XSL or JSON format from

Grafana Dashboard.

B. Workload Prediction

The data exported from the Grafana dashboard are

given as an input to workload prediction. Auto-

scaling actions are performed beforehand by

predicting the future resource demand. Predictive

approach address the rapid spike demand, outages

and variable traffic pattern issues. Compared to time-

series techniques, the Neural Network method gives

better results for anticipating the future workload.

The drawback is, it cannot remember events if there

is a very long and variant time lags between events.

To amend memorization of the standard feedforward

neural network, Recurrent neural network (RNN) is

utilized.

RNN is a densely packed Neural Network connecting

multiple hidden layers with recurrent connections.

A hidden layer nodes are connected in a loop and it

serves to maintain the memory between the states.

The hidden layer in RNN known as Long Short Term

Memory (LSTM), which is utilized to remember past

values (events). It is utilized to predict the

CPU/RAM utilization of the VMs with greater

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/
https://www.influxdata.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

E.G.Radhika et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946

1943

accuracy when compared to traditional approaches.

Based on the prediction, predictive autoscaling is

done by provisioning the instances ahead before the

server exceeds a given workload threshold. Effective

for long-term prediction and provides better results

when there is a non-linear correlation between past

and current values. The predicted result of Long

Short Term Memory Recurrent Neural Network

method is to be integrated on OpenStack.

C. Autoscaling on OpenStack

The predicted result is stored in the Swift component.

Swift is an Object Storage component in OpenStack

which stores data at large scale with high availability.

The data from the Swift is pulled to create a template

to trigger an instance by using Terraform [14]. A

Terraform is a tool developed by HashiCorp that can

be utilized to deploy and manage cloud infrastructure

facilely by defining configuration files. It is akin to

OpenStack Heat. Heat which is specific to OpenStack,

Terraform is provider agnostic and can work with

multiple cloud platforms such as OpenStack, AWS

and VMware.

Users define configuration files that Terraform

processes to create and manage infrastructure

resources across multiple cloud providers. It

generates an execution plan describing what it will

do to reach the desired state, and then executes it to

build the described infrastructure. As the

configuration changes, Terraform is able to

determine what transmuted and create incremental

execution plans which can be applied. Terraform

configuration files are saved as .tf files. Resources

represent infrastructure components, e.g. server,

virtual machine, container, network port.

The configuration file contains the details about the

provider that is OpenStack and the resource to be

created. Once the configuration file is created, the

three main terraform commands are executed to

create an instance based on configuration file [15].

The terraform commands are terraform init to

initialize a Terraform working directory, terraform

plan to generate and shows an execution plan and

terraform apply for building or changing the

infrastructure, i.e. creates a resource based on

execution plan.

IV. IMPLEMENTATION

The Figure 2 shows the flow of proposed work and

the corresponding implementation results. The

proposed RNN-LSTM method has been implemented

in python using Keras libraries for predicting the

future workload. Based on the predicted result a

predictive autoscaling is done on an OpenStack

Mirantis version. OpenStack is setup by using five

physical machines. Each machine has Intel® Core™

i5-6500, 8 GB RAM and 64 bit OS. A virtual cluster

that is OpenStack cluster is created consisting of

several VMs. An Apache Web Server and Telegraf

are deployed in one VM. Similarly, InfluxDb and

Grafana is deployed in another VM. When the user

requests hits the Apache web server, the Telegraf

monitors the metrics. InfluxDb continuously stores

the data monitored by Telegraf and Grafana

visualizes the metrics. The .csv file collected from

Grafana contains 24 hours with two months of real-

time data that is from 00:00:00 January 1, 2018 to

23:59:00 January 31, 2018 and from 00:00:00

February 1, 2018 to 23:59:00 February 28, 2018. The

Figure 3 shows the dataset collected from Grafana.

The dataset is given as input to Long Short Term

Memory Recurrent Neural Network. This deep

learning technique is used to predict the future

workload.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

E.G.Radhika et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946

1944

Figure 2. Flow Diagram of Proposed Method.

Figure 3. Dataset collected from Grafana dashboard

The steps to implement Recurrent Neural Network is

shown in figure 4.

Figure 4. Steps to Implement Recurrent Neural

Network

First the input dataset is split into 60% for training

and 40% for testing. The training dataset is

preprocessed by using MinMaxScaler. Keras libraries

are imported to build the Recurrent Neural Network

(RNN). RNN can be called as a regressor because

prediction is done by regressor, not by classification.

The input and Long Short Term Memory (LSTM)

layer which is a hidden layer are added using sigmoid

activation. The output layer will return the predicted

values. After adding the layers, the network is

compiled using Adam optimizer. The Adam

Optimizer gives better result compared to other

optimizer. The loss is calculated using Mean Squares

Error (MSE) and Mean Absolute Error (MAE) where

MSE and MAE is 0.003. Finally, the network is fit to

the normalized training dataset. To test the network

that is built, the testing dataset is compared with the

build model and the future prediction is done using

predict() function. The figure 5 shows the future

predicted result. The predicted result is stored in the

Swift component on OpenStack. The result is pulled

from Swift and a template is created as shown below:

Template to trigger an Instance

 Input: Predicted Results (Time and CPU_Utilization)

 Output: Aw32n Instance is deployed in OpenStack

 Begin:

if Time = = Current_Time

 if CPU_Utilization >= 60%

Invoke Configuration file

from Terraform to deploy an

Instance.

 endif

 endif

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

E.G.Radhika et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946

1945

Figure 5. Future Prediction using Recurrent Neural Network- Long Short Term Memory

To perform predictive autoscaling, the threshold

value is set at 60%. Based on the predicted result, the

Time is compared with current time and the CPU

Utilization is checked whether it is greater than or

equal to 60%. If the condition is satisfied, then the

configuration file named Stack.tf for deploying an

Instance is invoked from Terraform as shown below:

 Stack.tf configuration file

Configure the OpenStack provider

 provider “openstack” {

 user_ name = “admin”

 password = “pwd”

 auth_url = “http://10.1.1.60.13:8000/v2.0”

 region = “RegionOne”

 }

 # Create an Instance

 resource = “openstack_compute_instance_v2”

“instance1”{

 name = “instance1”

 image_id = “2e0754d7-41j0-7665-4343ade”

 flavor_id = “3”

 key_pair = “mykey”

 security_groups = [“default”]

 metadata {

 this = “that”

 }

 network {

 name = “my_Network”

 }

 }

In Stack.tf configuration file, the provider is

openstack which includes the following arguments.

The user_name and password is to login with.

auth_url is used as identity authentication url.

RegionOne is a region in which OpenStack uses to

create an instance.

To create an instance, a unique name for the resource

is given as “instance1”. Image_id, flavor_id and

key_pair are given in the OpenStack to create desired

instance. Metadata refers to metadata key/value pair

to make available from within the instance. The

network used is „my_ Network‟ that provides the

network connectivity to the instance.

Using Terraform init, plan and apply commands an

instance is deployed on OpenStack. The template is

run for every five minutes and the average of next 10

data points is taken. If it is above 60%, for example

the CPU Utilization is above 60% from 09:49:00 to

10:49:00. The VM is kept active for 1 hour otherwise

the Terraform may keep adding the VMs for every

time period having high utilization which will hurt

the quality of service. In case if the prediction is false

that is a wrong workload prediction then reactive

autoscaling is done after meeting the threshold value.

V. CONCLUSION

In this paper, Recurrent Neural Network- Long

Short Term Memory (RNN-LSTM) is used to

predict the future workload. Based on the result,

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

E.G.Radhika et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1940-1946

1946

the predictive autoscaling is done on OpenStack

by triggering an instance using Terraform. The

proposed system also adopts reactive autoscaling

approach in order to prevent negative impact of

wrong prediction. The results shows that, when the

massive workload arrives, the proposed system

predicts the future demand and spins the instance

accordingly.

VI. REFERENCES

[1]. Ching-Chi Lin, Jan-Jan Wu, Pangfeng Liu, Jeng-

An Lin and Li-Chung Song, "Automatic Resource

Scaling for Web Applications in the Cloud", in

Grid and Pervasive Computing, pp. 81–90, 2013.

[2]. Craig Sterrett, Yih Leong Sun, Shamail Tahir,

"OpenStack Workload Reference Architecture:

Web Applications",URL https://www.openstack.

org/assets/software/mitaka/ OpenStackWorkload

RefArchWebApps-v7.pdf.

[3]. Sushil Deshmukh , Sweta Kale, "Automatic

Scaling Of Web Applications For Cloud

Computing Services: A Review", in International

Journal of Research in Engineering and

Technology, Vol. 03, pp. 2321-7308, January 01,

2014.

[4]. AWS Auto Scaling Pricing, URL https://aws.

amazon.com/autoscaling/pricing/.

[5]. Kirk Evans, "Autoscaling Azure–Virtual

Machines",URLhttps://blogs.msdn.microsoft.com/

kaevans/2015/02/20/ autoscaling-azurevirtual-

machines/

[6]. Jianyu Sun, Haopeng Chen and Zhida Yin,"AERS:

An Autonomic and Elastic Resource Scheduling

Framework for Cloud Applications" in 2016 IEEE

International Conference on Services Computing

(SCC), pp: 66-73, September 2016.

[7]. Raouia Bouabdallah, Soufiene Lajmi, Khaled

Ghedira," Use of Reactive and Proactive Elasticity

to Adjust Resources Provisioning in the Cloud

Provider", in 2016 IEEE 18th International

Conference on High Performance Computing and

Communications, 12-14 December, 2016.

[8]. Jingqi Yang, Chuanchang Liu, Yanlei Shang,

Zexiang Mao, Junliang Chen, "Workload

Predicting-Based Automatic Scaling in Service

Clouds", in IEEE Sixth International Conference

on Cloud Computing, 2013.

[9]. Hector Fernandez, Guillaume Pierre, Thilo

Kielmann, "Autoscaling Web Applications in

Heterogeneous Cloud Infrastructures", 2014 IEEE

International Conference on Cloud Engineering

(IC2E), March 2014.

[10]. Nilabja Roy, Abhishek Dubey, Aniruddha

Gokhale, "Efficient Autoscaling in the Cloud

Using Predictive Models for Workload

Forecasting", in 2011 IEEE International

Conference on Cloud Computing (CLOUD),

September, 2011.

[11]. Mehran N. A. H. Khan, Yan Liu, Hanieh Alipour,

"Modeling the Autoscaling Operations in Cloud

with Time Series Data", IEEE 34th Symposium

on Reliable Distributed Systems Workshop

(SRDSW), January 07,2016.

[12]. Martin Duggan, Karl Mason, Jim Duggan, Enda

Howley, Enda Barrett," Predicting Host CPU

Utilization in Cloud Computing using

Recurrent Neural Networks", in 8th

International Workshop on Cloud Applications

and Security, November, 2017.

[13]. Lindsay Hill, "Using Telegraf, InfluxDB and

Grafana to Monitor Network Statistics", URL

https://lkhill.com/telegraf-influx-grafana-

network-stats/, November 24, 2017.

[14]. How to Use Hashicorp Terraform with

OpenStack,URL https://platform9.com/blog/how-

to-use-terraform-with-openstack/, July 22, 2016.

[15]. Michal Medvecky, "Managing your (OpenStack)

infrastructure with Hashicorp Terraform" URL

https://medium.com/@michalmedvecky/managin

g-your-openstack-infrastructure-with-hashicorp-

terraform-8c93ade214b4, May 17, 2017.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/
https://www.openstack/
https://aws/
https://blogs.msdn.microsoft.com/

