
CSEIT1833554 | Received : 05 April 2018 | Accepted : 20 April 2018 | March-April-2018 [(3) 3 : 1519-1526]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1519

Impact of Artificial Intelligence in Software Testing
Dr. A. P. Nirmala1, Md Shajahan2, Somnath K3

1Senior Assistant Professor, Master of Computer Applications, New Horizon College of Engineering, Bengaluru,

Karnataka, India
2Master of Computer Applications, New Horizon College of Engineering, Bengaluru, Karnataka, India
3Master of Computer Applications, New Horizon College of Engineering, Bengaluru, Karnataka, India

ABSTRACT

Since computer’s software applications rapidly increased in modern life, it is important to have enough

reliability and minimizing the probability of faults in software products. Software testing is a process to find

faults in software’s products, due to increase software reliability. Because testing process is very costly,

automation techniques are needed to reduce these costs and also, increase reliability. In automated testing, the

testing phases or part of them performed by intelligent methods, in order to reduce human role in the process.

Automatic testing has several advantages such as increase testing speed, quality and reliability, decrease testing

resources and costs. In this paper, after explaining software testing phases, we classified methods which can

use in automated software testing phases based on previous researches with aim to reach above advantages.

Keywords: AI impact on Software testing, Main Impact on Various Areas, Roles of AI in adapting, The bridge

between AI and human testers.

I. INTRODUCTION

The CEO and founder of AppDiff Jason Arbon shared

a funny live e.g. with the world, “making a gesture to

manually roll down window of a car” would make

his kids giggle at him. Well why won’t they, they

haven’t seen the good old days of a Maruti 800 or the

era of 1990’s. Surely the gap between the years of

their father’s youth and the fatherhood changed

transformed and gave the young ones a new world to

breathe in, to which many of them has stated to be

the best and the worst phase of science. Jason worked

for Google and Microsoft, he is a developer and a

tester both, a very write person to start with who can

answer the best on How artificial intelligence is

impacting software testing. Just the way today’s

generation finds it funny to roll down on the up

gesture of rolling down a window manually Jason

states that the coming generation is going to laugh at

the notion of testing done with methods being

followed today selecting, managing and driving

system under test will be all so out of fashion and

time consuming for them, why won’t they entertain

artificial l intelligence which will give them more

accuracy and consume less time, more of all it will

also cut the manual work which ends getting paid in

monthly salary, an advantage and disadvantage for

the young ones to see in coming days.

Automatic testing has several advantages such as

increase testing speed, quality and reliability,

decrease testing resources and costs. In this paper,

after explaining software testing phases, we classified

methods which can use in automated software

testing phases based on previous researches with aim

to reach above advantages.

This method classification has performed based on

their applications in software testing phases and

effects on test automation.

http://ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Dr. A. P Nirmala et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1519-1526

 1520

II. SOFTWARE TESTING PHASES

Based on [4] , testing process can divide into four

phases which explains in following subsections. With

this classification, a framework created to imply

testers must consider which problems before moving

to next problem and which phase can automate by

which methods those mention in section 3.

A. Modeling the software’s environment

Usually these interactions performed via interfaces

such as human, software, file system and

communication interfaces. Methods that can

simulate the interfaces may usable for automating

this phase.

B. Selecting test scenarios

In this phase, testers must select proper test scenarios

and Test Cases that covering each line of source code,

input sequences and execution paths to ensure all

software’s modules tested adequately. Because the

number of test cases can be very large to execute

them all in limited testing time, this is very

important to selecting test cases that have higher

probability of finding errors. They are some methods

that can effectively automate test case selection.

C. Running and evaluating test scenarios

After preparing and selecting test cases, testers must

execute them and then, they must evaluate outputs

to find if there is a fault. Testers compare the outputs

generated by executed test cases and the expected

outputs based on defined specifications in analysis

phase and system specifications. Automation process

requires a method to mapping each input to

corresponding output of the entire operational

environment and a tool for comparing these outputs.

In section 4, an intelligent input/output mapping

technique is introduced.

Sometimes expected outputs are not clearly defined.

This may duo to uncertainty in software’s behavior

or lack of complete specification.

D. Measuring testing process

It is very important to identify what is the status of

testing process and when the testing process can stop.

Testers need quantitative measurement for

determine the process status by cognizing the

number of bugs in the software and the probability

that any of these bugs will be discovered. Some

software quality estimation techniques can applicable

for automation of this process.

III. AUTOMATED SOFWARE TESTING

METHODS CLASSIFICATION

These methods applied for automating a phase or at

least some part of a phase in software testing process.

As mentioned before, the classification was based on

software testing phases and the applications of

methods in software testing phase automation. In

following, an attempt is made to explain such

methods.

A. Modeling the Software’s Environment (Phase 1)

Since regression testing is a process to retest

functionalities of software that remain in new

versions, Regression GUI Testing is a process to

reevaluate pre-tested parts of the software GUI in

modified version of the software. The GUI test

designer must regenerate test cases to target these

common functionalities, and keeping track of such

parts is an expensive and challenging process. So,

usually in practice, no regression testing of GUI is

performed. Many of GUI test cases from previous

software testing process are unusable.

Commonly, a GUI test case contains a reachable

initial state, a legal event sequence and expected

states. The initial state is used to initialize the GUI to

a desired state for specific test case and, an expected

state is the state after specific event is executed.

Therefore, a modification to the GUI can affect any

of these parts and lead to useless of pre-designed test

cases.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Dr. A. P Nirmala et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1519-1526

 1521

The GUI regression test cases can divide into two

groups: affected test cases and unaffected test cases.

Affected are test cases who should rerun but duo to

modifications in GUI, they must design again.

Unaffected are test cases that can execute exactly like

original software GUI testing process but because

they already executed in previous testing process,

there is no need to test them again. These unaffected

test cases are verified functionalities of the software

GUI that do not change in the new version. As

mentioned above, redesigning of affected test cases

are expensive and challenging.

Memon [10] presents a method to perform GUI

regression testing using AI Planner. He presents GUI

test cases using tasks as pair of initial and goal states.

These tasks remain valid in modified GUI, even

changes to GUI cause test cases unusable. Each task

represents a GUI’s functionality. As a result, it is

possible to generate affected test cases from these

tasks automatically. Also, this technique uses a GUI

model to automatically detect changes to the GUI

and identify test cases that must rerun.

In this study a Regression Tester was designed to

determine and regenerate affected test cases. The

overview of this regression tester is shown in Figure

2.

One of the inputs is Original test suits that generated

to test the original GUI. Other inputs are

representations of original and modified GUIs.

Regression Tester determined which test cases are

affected, unaffected or must be discarded. Because

discarded test cases verified functionalities that not

further exist to modified software GUI, they must

eliminate from testing process. Test case selector

partitions the original test suits into (1) unaffected

test cases, (2) obsolete tasks test cases, (3) illegal

event sequence affected test cases and (4) incorrect

expected states affected test cases. Illegal event

sequence affected test cases are regenerated by

Planning-based test case regenerator. But if planner

failed to find a plan, the test case marks as discarded

because it belongs to absolute tasks. Expected-state

regenerator is used to regenerate expected state for

incorrect expected state test cases and if it fails, test

case will discard.

Consequently, this method performed regression

testing based on re-planning affected test cases and

associating a task with each test case and also create

an interface between original and modified GUI to

generate test cases. Furthermore, this method

automate test case selection phase (the second phase

of software testing phases) in regression GUI testing.

B. Selecting the Test Scenarios (Phase 2)

Test case selection is second phase in software testing

process. Testers consider in effective test cases.

Effective test cases can reveal the majority of

software faults. According to [11], an effective test

case should:

 Have a high probability of finding an error

 Not reevaluate tested sections

 Be the best of its breed

 Be neither too complex nor too simple

Each test case is defined by a set of inputs and

expected output values. Basically, since the numbers

of all test cases are very large in modern software, it

is impossible to execute all of them in limited time

and resources. Also, because many of test cases

evaluate same section and part of the software, there

is no need to execute all of them.

Therefore, testers must wisely select effective test

cases with higher probability to finding faults.

Likewise, if executing a test case does not report any

faults, testers must not imagine the software is fault

free and reliable. In fact, testers only waste their time

in these situations.

So, this is very important to determine and select

effective test cases. Automating this process can

significantly decrease testing cost and increase

testing quality. A good test case reduction approach

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Dr. A. P Nirmala et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1519-1526

 1522

introduced in [12]. This research reveals that

program’s input- output analysis can identify which

input attributes mostly affect the value of a specific

output. It shows I/O analysis can significantly

reduced the number of test cases. An Artificial

Neural Networks (ANN) used to automating I/O

analysis by identifying important attributes and

ranking them. An ANN is a mathematical modeling

of human neural networks that can learn from past

experience using <input, output> pairs in a training

phase and generate outputs for unknown inputs

based on previous data. An ANN consists of layers -

each layer represented by one or more processing

unit called neurons- and connections between them.

ANN’s can learn by adjusting connections values in

the network [6].

Figure 1. Automated test case generation and

reduction.

This study modeled the software behavior using

ANNs and identified which input has less effect on

producing outputs by an ANN pruning algorithm.

Pruning an ANN removes unnecessary connections

between neurons but retaining significance ones. The

removing process deletes unimportant inputs and

also decreases the number of test cases. Finally, they

generated test cases by remaining most significant

inputs. Figure 1 depicts this process.

C. Running and Evaluating Test Scenarios (Phase

3)

As mentioned in section 2, evaluating test results in

third phase of software testing phases required

software’s fault free output. Testers need a method to

generate outputs of each input that uses in executed

test cases. Then, they can compare this output with

the test case execution output and if these outputs are

not the same, a fault is detected. This is a place which

testers need automatic testing Oracle. The Oracle is a

fault free source of expected outputs. Non-automatic

testing oracle can be a program specification or the

developer knowledge of software’s behavior [13]. An

Oracle must accept every input specified in

software’s specification and should always generate a

correct result.

Last and his colleges [7, 15] introduced a full

automated black-box regression testing method using

Info Fuzzy Network (IFN). IFN is an approach

developed for knowledge discovery and data mining.

The interactions between the input and the target

attributes of any type (discrete and continuous) are

represented by an information theoretic

connectionist network. An IFN represents the

functional requirement by an “oblivious” tree-like

structure, where each input attribute is associated

with a single layer and the leaf nodes corresponds to

combinations of input value [7].

The structure of their method is shown in Figure 2.

As can be seen in Figure 2, Random Test Generator

provides test case inputs by means of Specification of

System Inputs. These specifications contain

information about system inputs such as data type

and values domain. Test Bed executes these inputs

on Legacy Version (Previous version of the software

under test) and receives system outputs. Next, these

test cases are used to train and model IFN as

automated Oracle. Therefore, this Oracle can be

used to detect faults in new software version. This

method completely automated software testing’s

third phase in regression testing.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Dr. A. P Nirmala et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1519-1526

 1523

Figure 2. Classification of automated software testing methods.

IV. AI IMPACT ON SOFTWARE TESTING

Since computer’s software applications rapidly

increased in modern life, it is important to have

enough reliability and minimizing the probability of

faults in software products. Software testing is a

process to find faults in software’s products, due to

increase software reliability. Because testing process

is very costly, automation techniques are needed to

reduce these costs and also, increase reliability [8]. In

automated testing, the testing phases or part of them

performed by intelligent methods, in order to reduce

human role in the process [2].

Here is the table below to listing few e.g. between AI

testing

Artificial

Intelligence Testing

Manual Testing

1)Consumes less

time

1)Consumes more time

2)Adapts to changes

quickly

2)Need to go through

training

3)Will need years to

grow to full scale

3)Exists already

 Figure 3. AI testing

V. ADVANTAGES AND DISADVANTAGES

While artificial testing has brought lot of accuracy

and less consumption of time at the same time it has

brought disadvantages along with it, here are a few

which must be taken under consideration to take

better steps to avoid the disaster as well as to make

the best of out of what the phase of science is

offering us.

While the advantages of Time consumption,

Accuracy, human effort going down weigh’s the

artificial intelligence more, we should not forget that

at the same time it is going to cut down millions of

jobs worldwide and it is of course a software tool

which is prone to hacks. There is no doubt that

machines are learning fast, the computers can also

generate reports on copious amounts of data. IT

giants like Facebook make use of it through which

machine analyses about which kind of data will be

more interesting to the user and then it is punched in

the form of news feed [4].

If we go by the other side of scenario there are still

many who believe that manual testing can’t go out of

fashion as it gives the user high quality experience,

no software has been made without bugs in it,

manual testing will remain part of testing strategies

as creativity opens many doors for users to enjoy and

it definitely creates the market for software

developing companies [5].

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Dr. A. P Nirmala et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1519-1526

 1524

VI. MAIN IMPACT ON VARIOUS AREAS

The bots require very little maintenance and they are

also capable of discovering new paths through the

product by their own. The instant feedback

mechanism is considered to be major impact as it

gives an instant report to the developer or the tester

which earlier usually would take a long time and a

long procedure too. But while showcasing the

impacts on positive side we should not also forget

that artificial is definitely not human and we can

never expect anything but a robotic decision only,

one such e.g. comes from Sydney where in a café

siege people were desperately trying to leave, as all of

them tried booking Uber, the artificial intelligence or

the so called algorithm activated price charge which

is termed as price surge in this sector was really

disheartening and non-human as what can be

expected from artificial intelligence which did not

bother to take consideration of the crisis people were

trapped in. It may help testers to consume time but at

the very same point it will give a chance or time for

them to look with more creative ideas to rectify and

create something new[6].

VII. ROLE OF ARTIFICIAL INTELLIGENCE IN

ADAPTING

Machine learning bots are capable of helping with

testing especially with end-user experience taking

the front seat in testing. When trying to understand

the role of bots in software testing, we need to bear

in mind the fact that most applications have some

similarity, i.e. size of a screen, shopping carts, search

boxes and so forth. Bots can be trained to be

specialists in a particular area of an app. AI bots can

manage tens of thousands of test cases when

compared to regression testing which can handle

much lesser numbers. They know that AI could help

to reduce the level of effort (LOE) while ensuring

adherence to built-in standards.

AI bots can tap, type, and swipe through an app just

like any living, breathing user, and by continuing to

teach the AI how to take that data and apply it in an

intelligent way, you have yourself an invaluable tool

in a world of mobile applications that require rapid,

agile solutions.

VIII. THE BRIDGE BETWEEN AI AND HUMAN

TESTERS

But here’s the critical piece of data for testers—and

maybe more importantly, managers—to understand:

AI can, and should, work alongside human testers.

This isn’t about replacing what we have. With AI,

Arbon strongly believes we can make the testers we

already have more effective. “More than 80 percent

of testing is repetitive. You’re often just checking

that things work the same way they did yesterday.

This work is solvable by AI and automation,” Arbon

continued. “That other 20 percent of a tester’s time

today, the creative, questioning, reasoning part—that

is what people should really be doing, and that rarely

happens in today’s fast moving and agile app teams."

“While working along with artificial intelligence,

testers in the near future will have a chance to focus

on the most interesting and valued aspects of

software testing.” [3].

IX. CRITICS

While the impacts have been targeted negative by

many critics, at the same time they are being looked

through positive angle too, many entrepreneurs have

stated that the artificial intelligence will make better

developers and testers. One area could be seen is

through learning different languages also. Artificial

intelligence is expected to bring developers together

and work better, artificial intelligence is can provide

guidance or estimates wherever a complex problem

occurs between two different variables and when

there is lot of data also available from projects used

earlier.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Dr. A. P Nirmala et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1519-1526

 1525

X. CONCLUSION

Summarizing the entire topic “Impact of Artificial

intelligence on software testing” concludes with

results to be awaited as this industry is yet to reach

places, we do find a question over websites of

submitting a unique code and to make the system

believe we punch in the word to prove that we are

not a robot, the difference between this check and

test is one such small world of Artificial intelligence.

The result is still awaited as there is not a report or

index which show cases the jobs brought down by

this tool, the results are still awaited as small scale

industries have not touched the tools of artificial

intelligence for software testing yet but as

predictions are always welcome to avoid the abyss of

darkness we must compromise the tools to be under

our control as it is us who have the power of

creativity,it is us who teach and it is us who make

this system, consuming less time might lead us to

more profit, accuracy might give us better results but

in the end you do need a human touch to start things

all over, let it be a test button only, after all this very

article will be tested for plagiarism it will certainly

be difficult for a human to do it by himself but at the

very same time we need the same person to perform

the activity of clicking the plagiarism button and

submit the report. Impact may change the entire

scenario of testing in coming days, but we will

always have the upper hand.

In this paper, a classification of automated and

intelligent methods has presented which can use in

software testing phases. Each phase has introduced

and explained based on how it can be totally or

partially automated. The methods that used varied

between AI methods like ANNs, CBR and AI

planning, or statistical methods such as Regression

Modeling and PCA. Some of the methods applicable

in any type of test and some in special tests like

regression testing. Each of these methods has

limitations based on the tools they used. For example,

ANN models of software cannot be accurate enough

if software is non deterministic. Or IFN model can

use if application is data oriented. In addition, testers

must consider overhead costs of using these methods,

and extra knowledge and specialist needed for

developing such techniques. On the other hand,

resent studies in comparing costs of using and not

using these methods show that these automatic

approaches have significant effect in reducing testing

cost and increasing software quality.

Finally, because each method has affect in special

type of test, elimination of human role in testing

process cannot be complete yet. Consequently, more

researches are needed in order to automate hole

testing process.

XI. REFERENCES

[1]. Su, Y.-S. and Huang, C.-Y. Neural-network-

based approaches for software reliability

estimation using dynamic weighted

combinational models. Journal of Systems and

Software, 80, 4 2007), 606-615.Ding, W. and

Marchionini, G. 1997 A Study on Video

Browsing Strategies. Technical Report.

University of Maryland at College Park.

[2]. Myers, G. J. The Art of Software Testing,

Second Edition. Wiley, 2004.

[3]. Pressman, R. J. Software Engineering: A

Practitioners Approach . Sixth Edition.

McGraw-Hill 2005.

[4]. Whittaker, J. A. What is software testing? And

why is it so hard? Software, IEEE, 17, 1 2000),

70-79.

[5]. Khoshgoftaar, T. M. and Seliya, N. Three-

Group software quality classification modeling

using an Automated Reasoning approach.

World Scientific, City, 2004.

[6]. Fausett , L. Fundamentals of Neural Networks:

Architecture , Algorithms and Applications.

Prentice Hall 1994.

[7]. Last, M. and Freidman, M. Black-Box Testing

with Info-Fuzzy Networks. World Scientific,

City, 2004.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Dr. A. P Nirmala et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1519-1526

 1526

[8]. Smith, L. I. A tutorial on Principal Components

Analysis. City, 2002.

[9]. Stockburger, D. W. Regression Models. Atomic

Dog Publishing, City, 2001.

[10]. Memon , A. M. Automated GUI Regression

Testing using AI Planning. World Scientific,

City, 2004.

[11]. Saraph, P., Last, M. and Kandell, A. Test case

generation and reduction by automated input-

output analysis. Institute of Electrical and

Electronics Engineers Inc., City, 2003.

[12]. Saraph, P., Kandel, A. and Last, M. Test Case

Generation and Reduction with Artificial

Neural Networks. World Scientific, City, 2004.

[13]. Aggarwal , K. K., Singh, Y., Kaur , A. and

Sangwan , O. P. A Neural Net based Approach

to Test Oracle. ACM Software Engineering

Notes2004).

[14]. Ye, M., Feng, B., Zhu, L. and Lin, Y. Neural

networks based automated test oracle for

software testing. Springer Verlag, Heidelberg,

D-69121, Germany, City, 2006.

[15]. Last, M., Friendman, M. and Kandel, A. Using

data mining for automated software testing.

International Journal of Software Engineering

and Knowledge Engineering, 14, 4 2004), 369-

393.

[16]. Khoshgoftaar, T. M., Pandya, A. S. and More,

H. B. A neural network approach for predicting

software development faults. City, 1992.

[17]. Khoshgoftaar, T. M., Szabo, R. M. and Guasti,

P. J. Exploring the behavior of neural network

software quality models. Software Engineering

Journal, 10, 3 1995, 89-96.

[18]. Khoshgoftaar, T. M., Allen, E. B., Hudepohl, J.

P. and Aud, S. J. A. A. S. J. Application of

neural networks to software quality modeling

of a very large telecommunications system.

Neural Networks, IEEE Transactions on, 8, 4

1997, 902-909.

[19]. Khoshgoftaar, T. M., Allen, E. B. and Xu, Z.

Predicting testability of program modules using

a neural network. City, 2000.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

