
CSEIT1833565 | Received : 01 April 2018 | Accepted : 10 April 2018 | March-April-2018 [(3) 3 : 1468-1474]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1468

Reverse Update : A Uniform Policy Update Theme For

Software Defined Networking
D. Banu Priya, T. Sivakumar

Department of Computer Science, Pondicherry University, Puducherry, Tamil Nadu, India

ABSTRACT

Policy and path updates area unit common causes of network instability, resulting in service disruptions or

vulnerable intermediate states. during this letter, we tend to propose the Reverse Update, an update theme

for software system outlined Networking that guarantees to preserve properties of flows throughout the

transition time. we tend to prove through a proper model that the proposal achieves consistent policy

updates, during which in-transit packets are continually handled within the next forwarding hops by

identical or a newer policy. the most contributions are: (i) a relaxation of the conception of per-packet-

consistency within the information plane of software system outlined Networking; and (ii) a policy update

theme, evidenced to be consistent and economical. A software system outlined Networking machine was

developed and valid. The results of our simulations show that the planned Reverse Update theme is quicker

and has lower overhead than the present Two-Phase Update planned within the literature.

Keywords: Software Defined Networking, Consistency, Policy Update, Network Security

I. INTRODUCTION

Software-Defined Networking (SDN) is an idea

which has recently reignited the interest of network

researchers for programmable networks and shifted

the attention of the networking community to this

topic by promising to make the process of designing

and managing networks more innovative and

simplified compared to the well-established but

inflexible current approach. Designing and managing

computer networks can become a very daunting task

due to the high level of complexity involved. The

tight coupling between a network's control plane

(where the decisions of handling traffic are made)

and data plane (where the actual forwarding of

traffic takes place) give rise to various challenges

related to its management and evolution. Network

operators need to manually transform high level

policies into low-level configuration commands, a

process which for complex networks can be really

challenging and error-prone. Introducing new

functionality to the network, like intrusion-

detection systems and load balancers usually requires

tampering with the network’s infrastructure and has

a direct impact on its logic, while deploying new

protocols can be a slow process demanding years of

standardization and testing to ensure interoperability

among the implementations provided by various

vendors. The idea of programmable networks has

been proposed as a means to remedy this situation by

promoting innovation in network management and

the deployment of network services through

programmability of the underlying network entities

using some sort of an open network API. This leads

to flexible networks able to operate according to the

user’s needs in a direct analogy to how programming

languages are being used to reprogram computers in

order to perform a number of tasks without the need

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

D Banu Priya et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1468-1474

 1469

for continuous modification of the underlying

hardware platform. SDN is a relatively new paradigm

of a programmable network which changes the way

that networks are designed and managed by

introducing an abstraction that decouples the control

from the data plane. In this approach a software

control program, referred to as the controller, has an

overview of the whole network and is responsible for

the decision making, while the hardware (routers,

switches etc.) is simply responsible for forwarding

packets into their destination as per the controller’s

instructions, typically a set of packet-handling rules.

Software Defined Networking (SDN) is an emerging

network architecture where network control is

decoupled from forwarding and is directly

programmable. This migration of control, formerly

tightly bound in individual network devices, into

accessible computing devices enables the underlying

infrastructure to be abstracted for applications and

network services, which can treat the network as a

logical or virtual entity. Network intelligence is

(logically) centralized in software-based SDN

controllers, which maintain a global view of the

network. As a result, the network appears to the

applications and policy engines as a single, logical

switch. With SDN, enterprises and carriers gain

vendor-independent control over the entire network

from a single logical point, which greatly simplifies

the network design and operation. SDN also greatly

simplifies the network devices themselves, since they

no longer need to understand and process thousands

of protocol standards but merely accept instructions

from the SDN controllers.

II. LITERATURE SURVEY

Abstractions for Network Update

Configuration changes are a common source of

instability in networks, leading to outages,

performance disruptions, and security vulnerabilities.

Even when the initial and final configurations are

correct, the update process itself often steps through

intermediate configurations that exhibit incorrect

behaviors. This paper introduces the notion of

consistent network updates—updates that are

guaranteed to preserve well-defined behaviors when

transitioning between configurations. We identify

two distinct consistency levels, per-packet and per-

flow, and we present general mechanisms for

implementing them in Software-Defined Networks

using switch APIs like OpenFlow. We develop a

formal model of OpenFlow networks, and prove that

consistent updates preserve a large class of properties.

We describe our prototype implementation,

including several optimizations that reduce the

overhead required to perform consistent updates. We

present a verification tool that leverages consistent

updates to significantly reduce the complexity of

checking the correctness of network control software.

Finally, we describe the results of some simple

experiments demonstrating the effectiveness of these

optimizations on example applications.

A NICE way to test Openflow applications

The emergence of OpenFlow-capable switches

enables exciting new network functionality, at the

risk of programming errors that make

communication less reliable. The centralized

programming model, where a single controller

program manages the network, seems to reduce the

likelihood of bugs. However, the system is

inherently distributed and asynchronous, with

events happening at different switches and end hosts,

and inevitable delays affecting communication with

the controller. In this paper, we present efficient,

systematic techniques for testing unmodified

controller programs. Our NICE tool applies model

checking to explore the state space of the entire

system—the controller, the switches, and the hosts.

Scalability is the main challenge, given the diversity

of data packets, the large system state, and the many

possible event orderings. To address this, we propose

a novel way to augment model checking with

symbolic execution of event handlers (to identify

representative packets that exercise code paths on

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

D Banu Priya et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1468-1474

 1470

the controller). We also present a simplified

OpenFlow switch model (to reduce the state space),

and effective strategies for generating event

interleavings likely to uncover bugs. Our prototype

tests Python applications on the popular NOX

platform. In testing three real applications—a MAC-

learning switch, in-network server load balancing,

and energyefficient traffic engineering—we uncover

eleven bugs.

OF.CPP: Consistent packet processing for Openflow

This paper demonstrates a new class of bugs that is

likely to occur in enterprise OpenFlow deployments.

In particular, step-by-step, reactive establishment of

paths can cause network-wide inconsistencies or

performance- and space-related inefficiencies. The

cause for this behavior is inconsistent packet

processing: as the packets travel through the network

they do not encounter consistent state at the

OpenFlow controller. To mitigate this problem, we

propose to use transactional semantics at the

controller to achieve consistent packet processing.

We detail the challenges in achieving this goal

(including the inability to directly apply database

techniques), as well as a potentially promising

approach. In particular, we envision the use of multi-

commit transactions that could provide the necessary

serialization and isolation properties without

excessively reducing network performance.

A distributed and robust SDN control plane for

transactional network updates

Software-defined networking (SDN) is a novel

paradigm that outsources the control of

programmable network switches to a set of software

controllers. The most fundamental task of these

controllers is the correct implementation of the

network policy, i.e., the intended network behavior.

In essence, such a policy specifies the rules by which

packets must be forwarded across the network. This

paper studies a distributed SDN control plane that

enables concurrent and robust policy

implementation. We introduce a formal model

describing the interaction between the data plane

and a distributed control plane (consisting of a

collection of fault-prone controllers). Then we

formulate the problem of consistent composition of

concurrent network policy updates (termed the CPC

Problem). To anticipate scenarios in which some

conflicting policy updates must be rejected, we

enable the composition via a natural transactional

interface with all-or-nothing semantics. We show

that the ability of an f-resilient distributed control

plane to process concurrent policy updates depends

on the tag complexity, i.e., the number of policy

labels (a.k.a. tags) available to the controllers, and

describe a CPC protocol with optimal tag complexity

f + 2.

Consistency is not easy: How to use two-phase

update for wildcard rules?

The recent proposed two-phase mechanism is a

provable theory to achieve consistent updates for

SDN. However, how to make it work for practical

rules is important yet unsolved-(1) two-phase

mechanism requires that rules in the new

configuration after an update are assigned with a

distinct version number from rules in the old

configuration before an update; but (2) setting rules

in each configuration with a distinct version number

causes serious rule-space overheads in practice due to

the sophisticated ―covered‖ relationships between

practical wildcard rules. In this letter, we design a

simple yet generic solution for the problem. By using

well-designed wildcard-based version number

matchings, we simplify the update procedure, make a

stream of updates easy to be processed in parallel,

and avoid all unwanted rule-space overheads. We

think that our mechanism bridges the gap between

the theory of two-phase consistent update and the

practical issue of how to use it for today's networks.

A safe, efficient update protocol for Openflow

networks

We describe a new protocol for update of OpenFlow

networks, which has the packet consistency

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

D Banu Priya et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1468-1474

 1471

condition and a weak form of the flow consistency

condition. The protocol conserves switch resources,

particularly TCAM space, by ensuring that only a

single set of rules is present on a switch at any time.

The protocol exploits the identity of switch rules

with Boolean functions, and the ability of any switch

to send packets to a controller for routing. When a

network changes from one ruleset (ruleset 1) to

another (ruleset 2), the packets affected by the

change are computed, and are sent to the controller.

When all switches have been updated to send

affected packets to the controller, ruleset 2 is sent to

the switches and packets sent to the controller are

re-released into the network.

Incremental consistent updates

A consistent update installs a new packet-forwarding

policy across the switches of a software-defined

network in place of an old policy. While doing so,

such an update guarantees that every packet entering

the network either obeys the old policy or the new

one, but not some combination of the two. In this

paper, we introduce new algorithms that trade

the time required to perform a consistent update

against the rule-space overhead required to

implement it. We break an update in to k rounds

that each transfer part of the traffic to the new

configuration. The more rounds used, the slower the

update, but the smaller the rule-space overhead. To

ensure consistency, our algorithm analyzes the

dependencies between rules in the old and new

policies to determine which rules to add and remove

on each round. In addition, we show how to

optimize rule space used by representing the

minimization problem as a mixed integer linear

program. Moreover, to ensure the largest flows are

moved first, while using rule space efficiently, we

extend the mixed integer linear program with

additional constraints. Our initial experiments show

that a 6-round, optimized incremental update

decreases rule space overhead from 100% to less than

10%. Moreover, if we cap the maximum rule-space

overhead at 5% and assume the traffic flow volume

follows Zipf's law, we find that 80% of the traffic

may be transferred to the new policy in the first

round and 99% in the first 3 rounds.

Efficient synthesis of network updates

Software-defined networking (SDN) is

revolutionizing the networking industry, but current

SDN programming platforms do not provide

automated mechanisms for updating global

configurations on the fly. Implementing updates by

hand is challenging for SDN programmers because

networks are distributed systems with hundreds or

thousands of interacting nodes. Even if initial and

final configurations are correct, naively updating

individual nodes can lead to incorrect transient

behaviors, including loops, black holes, and access

control violations. This paper presents an approach

for automatically synthesizing updates that are

guaranteed to preserve specified properties. We

formalize network updates as a distributed

programming problem and develop a synthesis

algorithm based on counterexample-guided search

and incremental model checking. We describe a

prototype implementation, and present results from

experiments on real-world topologies and properties

demonstrating that our tool scales to updates

involving over one-thousand nodes.

A two phase multipathing scheme based on genetic

algorithm for data center networking

Data centers for cloud computing should allocate

services with different traffic patterns, provide high

data transfer capacity and link fault tolerance. Data

center network topologies provide physical

connection redundancy, which forwarding

mechanisms avail to generate multiple paths. In this

paper, we divide multipathing into two phases: (i)

Configuration phase based on genetic algorithms to

minimize path lengths and maximize link usage

diversity; (ii) Path selection phase based on heuristics

to minimize path reuse. The proposed multipathing

scheme implements minimal modification in

infrastructure. Our proposal only requires common

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

D Banu Priya et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1468-1474

 1472

network devices features and it avoids any tenant

modification. We develop a flow simulator to

evaluate multipathing techniques. The simulations

model flow behaviors in different data center

scenarios and compares the proposed scheme with

multipathing techniques in literature. The results

show the proposed scheme enhances transmission

rates, even in the highest network utilization

scenarios.

III. PROPOSED METHODOLOGY

We propose the Reverse Update scheme that

guarantees a per-packet consistent policy update for

Software Defined Networking. The proposed scheme

is based on the relaxation of the per-packet

consistency concept and on the installation of policy

updates in a sequence that corresponds to the reverse

path of the flows.

The proof of consistency of the Reverse Update

scheme is performed using a formal model of

Software Defined Networking. Reverse Update is a

policy update scheme for Software Defined

Networking that ensures consistency of policy

commitment. The key advantage of our proposal

when compared with the Two-Phase Update is the

lower overhead for configuring, as it does not depend

on packet tagging. The Reverse Update is based on

updating flow processing and forwarding rules in the

reverse path of the already installed flow, to assure

that a flow always reaches the most current network

configuration. We relax the concept of per-packet

consistency. We assume that a packet may be

processed by more than one global network

configuration if, and only if, it is always processed by

the most recent network configuration. In other

words, the relaxed concept of per-packet consistency

avoids that a packet, which has already been

processed by a recent configuration, be processed by

a previous configuration in the next hops. The

relaxed concept is important to assure that a packet is

never forwarded by unexpected network states.

We guarantee this property because every packet

that reaches an already updated switch will always

be handled by the most recent network

configuration, in which the invariant properties are

assured. Moreover, the relaxed concept enables the

fast deployment of updates, as it updates even the in-

transit packets. A packet that travels from the source

to the destination should never traverse a switch that

still presents a previous configuration state. This

occurs because the configuration updates are applied

on the reverse sense, from the destination to the

source. When using the Reverse Update scheme,

every packet will not be processed by a preceding

configuration state.

Flow Diagram

Figure 1 Flow diagram for proposed method

It is worth noting that the definition of a Reverse

Update is restricted to policy updates that act on

disjoint and loop free paths on the network.

Moreover, the composition of new and old paths

should be loop-free.

Taking these restrictions into consideration, Reverse

Update fits well for path and action updates on the

flow paths. Moreover, when considering switches

that process packets through multiple tables, the

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

D Banu Priya et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1468-1474

 1473

Reverse Update remains the same, as the processing

pipeline acts as a loop-free path inside each switch.

The scheme acts in each switch on the reverse path,

updating each table in the reverse order of packet-

processing pipeline.

Another important consideration is that, as wildcard

flow entries have different granularity, policy

updates can incur on the definition of overlapping

policies. Updating overlapping-policies is a complex

challenge. In this paper we assume that updates do

not overlap with already defined policies.

IV. EXPERIMENTAL RESULT

We evaluate the proposed Reverse Update scheme by

simulating an SDN. In this scheme, the data success

route rate is higher, the detection energy

consumption is low. We verify that the number of

rules installed by the Two-Phase Update is almost

eight times higher than other update schemes, due to

the addition of new rules on the network-core ports

on each switch, for each flow on the network. The

Reverse Update only updates the rules, as well as the

Ideal Update. We evaluated, for each update scheme,

the percentage of forwarded packets that follows the

same configuration when compared to the Ideal

Update. This metric is important to measure the

update proportionality.

V. RESULTS AND DISCUSSION

The reverse update scheme is simulated for 40 nodes

spread randomly in a network; transmission range

for each node is random. Nodes are positioned

randomly on the plane. Nodes start its travel from a

random location to a random direction with a

random speed.

Figure 2. Node Creation

Figure 3. Proposed Scheme

Figure 4. Comparison of Updated Scheme

with Reverse Scheme

VI. CONCLUSION

In this letter, we propose the Reverse Update scheme.

The proposed scheme updates switch policies, switch-

by-switch, on a Software Defined Networking, in the

reverse sense of flow paths. We prove that our policy

update scheme is per packet consistent and, thus, the

flow properties are preserved. It is worth mentioning

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

D Banu Priya et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1468-1474

 1474

that our scheme is simple and does not require packet

tagging, which guarantees low processing overhead

and reduced number of installed rules on the core of

the network. The simulation of Reverse Update

scheme in a SDN showed that the configuration

overhead is close to an ideal update scheme.

Moreover, the Reverse Update promptly updates the

rules, presenting a similarity with the Ideal Update of

94%, which is up to four times higher when

compared to the Two-Phase Update scheme.

VII. REFERENCES

[1]. M Reitblatt, N. Foster, J. Rexford, C. Schlesinger,

and D. Walker, ―Abstractions for network update,‖

in Proceedings of the ACM SIGCOMM 2012. New

York, USA: ACM, 2012, pp. 323–334.

[2]. N. C. Fernandes, M. D. D. Moreira, I. M. Moraes, L.

H. G. Ferraz, R. S. Couto, H. E. T. Carvalho, M. E.

M. Campista, L. H. M. K. Costa, and O. C. M. B.

Duarte, ―Virtual networks: isolation, performance,

and trends,‖ Annals of Telecommunications -

Annales des T´el´ecommunications, vol. 66, no. 5,

pp. 339–355, 2010.

[3]. M Canini, D. Venzano, P. Pere?s´ini, D. Kosti´c,

and J. Rexford, ―A NICE way to test openflow

applications,‖ in Proceedings of the USENIX

NSDI’12. Berkeley, CA, USA: USENIX Association,

2012, pp. 127– 140.

[4]. P. Pere?s´ini, M. Kuzniar, N. Vasi´c, M. Canini, and

D. Kostiu, ―OF.CPP: Consistent packet processing

for openflow,‖ in ACM SIGCOMM - HotSDN’13.

Hong Kong, China: ACM, 2013.

[5]. M. Canini, P. Kuznetsov, D. Levin, S. Schmid et al.,

―A distributed and robust SDN control plane for

transactional network updates,‖ in The IEEE

INFOCOM 2015, Apr. 2015.

[6]. S Luo, H. Yu, and L. Li, ―Consistency is not easy:

How to use two-phase update for wildcard rules?‖

Communications Letters, IEEE, vol. 19, no. 3, pp.

347–350, Mar. 2015.

[7]. R McGeer, ―A safe, efficient update protocol for

openflow networks,‖ in ACM SIGCOMM -

HotSDN’12. Helsinki, Finland: ACM, 2012.

[8]. N P. Katta, J. Rexford, and D. Walker, ―Incremental

consistent updates,‖ in ACM SIGCOMM -

HotSDN’13. Hong Kong, China: ACM, 2013.

[9]. J McClurg, H. Hojjat, P. Cerny, and N. Foster,

―Efficient synthesis of network updates,‖ in ACM

SIGPLAN - PLDI. Portland, USA: ACM, Jun. 2015.

[10]. L. H. G. Ferraz, D. M. F. Mattos, and O. C. M. B.

Duarte, ―A twophase multipathing scheme based on

genetic algorithm for data center networking,‖ in

IEEE GLOBECOM 2014, Dec. 2014, pp. 2270–2275.

