
CSEIT1833661 | Received : 10 April 2018 | Accepted : 24 April 2018 | March-April-2018 [(3) 3 : 1832-1844]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1832

-
1844

Literature Review on Extended Use case in Modeling Non-
functional Requirement

Nina Fadilah Najwa*1, Muhammad Ariful Furqon2, Faizal Mahananto3

*123 Department of Information System, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

nina.fadilah.najwa16@mhs.is.its.ac.id1, ariful.furqon16@mhs.is.its.ac.id2, faizal@is.its.ac.id3

ABSTRACT

Complexity in defining non-functional requirements happened because it has many aspects. It is very difficult for

stakeholders to know non-functional requirements in detail which are actually needed and has an impact on the

abandonment of non-functional requirements elicitation. So it is required to find out the importance of modeling

of non-functional requirements by using extended use case. In order to review the topic, research questions are

formulated then defining keywords for finding a literature from the resources. The result of finding literature

shows that the use of extended use case can ease the modeling of non-functional requirements because of the ease

of the annotation and more familiar to use. There are eight steps for modeling non-functional requirements with an

extended use case. Furthermore, the extended use case can model the various categories of non-functional

requirements such as security, availability, performance, robustness, visibility, analyzability, manageability,

completeness, correctness, redundancy, accessibility and adaptivity.

Keywords: Extended Use Case, Non-Functional, Requirement Software Engineering

I. INTRODUCTION

Elicitation is one of the processes that are extremely

important in the software development and part of

techniques for requirement analysis. In fulfilling

software requirements, stakeholders need to understand

the requirement for achieving the objectives and

benefits of the system to be made. Evolving

requirements categorized into functional requirements

and non-functional requirements [1]. Functional

requirements are statements from system service which

is must be available in that system, such as how the

system interaction with the type of input data and how

the system should act in particular situation [2].

Besides, non-functional requirements are one of the

keys criteria to distinguish between many types of

system in the software development. In general, non-

functional requirements in software development

specified in addition to the requirement, as

performance, reliability, security, accuracy, etc., which

is in its early stages software development seems

similar with functional requirement [1].

Requirement elicitation has long been focusing on

one side that is functional requirements namely objects

and about functional task activity in the system [3].

Neglect gainstof non-functional requirements will have

an impact on failure in the software development. In

general, problems that often happens is very lack of

stakeholder’s attention for the understanding the non-

functional requirements of the system [1]. Non-

functional requirements are too subjective to clearly

specificated because of the impacts from system

analyst and stakeholder [4]. This case also because

complexity in defining non-functional requirements

have many aspects, and thus it is very difficult for

stakeholders to find out by details of non-functional

requirements required actually.

According to the research of Cysneiros and Yu still

at least technique in eliciting for modeling non-

functional requirements. Some approach that integrates

non-functional requirements will take the expense of

maintaining costs [1]. This obviously different to

elicitation technique in modeling functional

requirements that have had lots of technique.

mailto:nina.fadilah.najwa16@mhs.is.its.ac.id1
mailto:ariful.furqon16@mhs.is.its.ac.id2

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1833

Sometimes, functional requirements and non-functional

requirements equated meaning and give rise to

ambiguity. Since the non-functional requirements

connected to the functional requirements, this creates

conflicts between stakeholders and developers. For

example, the security system can use the keyword level

two or biometric system but will be increased

production costs that deal with non-functional

requirement system [1]. Thus, non-functional

requirements not be likened to functional requirements

in software development.

Generally, in modeling software requirements, tools

used in Unified Modelling Language (UML) which

classifies different requirements and visualize into the

design system [4]. Among types of the diagram in

UML, the use case is the most often used in described

functional requirements system [5]. But, the research

has proved by use case can be described non-functional

requirements but having many irregularities and too

much ambiguity if combined with functional

requirements. This is because of use case is not the

only model for the system, but also the model for the

human action.

On modeling use case in Unified Modelling

Language (UML), there is an element the relationships,

which represented whether a use case depends on use

case another or is an extension of use case another.

Hernandez [6] classify relationship to include and

extend. Include is a relationship indicating that

functionality of a use case depends on use case another.

While extend is a relationship in use case where done

the addition of additional requirements especially non-

functional requirements defined in an extended use

case. According to Turner [5] to model human

interaction, system, and data requires a modeling use

case extended by using relationship 'extend'. Modeling

performed with an extended use case are usually

related to the requirements of performance system or

non- functional requirements software that other. So,

that in the process modeling software requirements to

defines and model non-functional requirements with

better to use extended use case diagram to avoid

development software that poor quality and unstable.

Based on the research has been conducted by

previous research associated with modeling non-

functional requirements, then modeling extended use

case suitable for model non-functional requirements

software. The extended use case can be used to elicit

requirements such as presented by Rahman [1] that

non-functional requirements elicitation is one of

essential prioritized from the perspective of

stakeholders. Besides used to elicit and model non-

functional requirements what it must present on the

system, according to Zou [7] extended use case also

can help the developer to understand what the system

needs for non-functional requirements. In addition

problems complexity use case probably one of the

things that should be avoided in modeling non-

functional requirements with the extended use case.

According to Kaur [4], relation or relationship between

use case will add complexity in use case. So, it is

important to heed the complexity of a use case in

defining non-functional requirements in use case.

In writing this review literature, writers will review

issues concerning on modeling non-functional

requirements software using extended use case as a

technique to model non-functional requirements. The

purpose of this literature review should assess some

paper associated with non-functional requirements and

modeling extended use case. Based on the study of the

research, writers generalize intents and purposes of

paper associated with modeling non-functional

requirements and concluded research results papers

beforehand so that is expected to be more

understandable. In addition, the contribution given by

this literature review is supported or corroborate the

results of studies that have been done before relating to

modeling non-functional requirements by using

extended use case. Strengthening the results of the

study formerly given by writers of critical thinking

stated at a discussion based on previous studies. It is

expected that literature review it is not just being the

summary of the previous studies but also can trigger

researchers another to do research on the topic of

modelling non-functional requirements with the

extended use case. The last result expected that is, to

know the advantages and the importance of extended

use case in model non-functional requirements, it also

needs to pay attention to the weakness of modeling is

problems complexity that may be caused by modeling

extended use case.

II. RELATED WORKS

A. Non-functional Requirement

Zou et al describe non-functional requirements as an

important limitation that must exist during software

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1834

development [7]. Non-functional requirements should

be defined as early as possible otherwise, they will

cause problems related to the quality of the developed

software. According to Casamayor, et al [8] the

examples of non-functional requirements are security,

performance, availability, extensibility, and portability.

However, according to ISO 9126 described by Zou, et

al [7] There are six categories of non-functional

requirements including maintainability, functionality,

portability, efficiency, usability, and reliability.

According to Zhang [9], Non-functional requirements

are essential for success in software development

considering that in software development there is a

constraint which must be defined so that the quality of

the developed software can be as expected by the

stakeholders.

On the other hand, according to Olmsted [10] in fact,

in the software development, nonfunctional

requirements are treated like secondary requirements

and are often ignored until the end of the software

development. Some studies suggest that non-functional

requirements are difficult to model, develop, or test so

that these non-functional requirements are often

overlooked. According to Singh, et al [11] as a result of

underestimating non-functional requirements on

software development may lead to the failure of the

software development project. A similar opinion was

also presented by Mahmoud [12] that failure to identify

non-functional requirements could have an impact on

the quality of the software developed. More

specifically described that non-functional requirements

tend to be connected through a variety of

interdependencies that are interconnected with

functional needs. So if non-functional requirements are

not defined in the early stages of software development,

it will impact the next stage of software development.

According to Liu, et al [13] in recent years, there has

been an increasing awareness of the importance of non-

functional requirements for developing a user satisfied

software. Several studies related to non-functional

requirements have been made for the purpose of

providing a systematic way to address non-functional

requirements in the early stages of software

development. Several approaches have been made to

model non-functional requirements in the early stages

of software development.

According to Chopra [14], non-functional

requirements have been considered as unique

requirements which not found in functional

requirements and must remain defined and modeled on

software development.

B. Extended Use Case

The purpose of use case modeling is to model the

requirements of people without high training or special

skills to understand and describe them [15]. In a use

case diagram, it consists of four elements that work on

a system: the system itself, the actor that interacts with

the system, the service (use case) fulfilled by the

system, and the relationships between these elements

[16]. The relationship on UML (include, extend,

generalization) describes the structural view of the

requirements. Extend is an event of a use case that may

be incremented by the addition of a behavior defined in

an extending use case [6]. Two use cases connected to

a «extends» relationship if one use case (known as a

base use case) is implicitly a behavior of one use case

(called an extension use case) in a specific location.

Extension use cases are an execution only when special

conditions are met in basic use cases [16]. There are

several reasons for submission to the literature using

the «extends» relationship in the use case model.

III. METHODOLOGY

In this phase will be described literature

methodology which is based on guidelines of

Kitchenham [17]. But the basis of reviews literature do

is to collect and evaluate the research that deals with

questions raised issues, then produce ambiguity, and

capability [18]. As for the purpose of literature review

according to Kitchenham, is to identify, evaluate, and

research available relating to questions to research or

topics, or phenomenon of being interesting [17].

The methodology that used in literature review

refers to the methodology described by Kitchenham

[17, 19], which includes several phases, they are:

1. Defining research question

2. Literature sources

3. Determining the keywords of literature search

4. Literature selection

5. Extracting data and synthesis

A. Research Question

This is literature review specified based on research

question:

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1835

1. RQ 1: What is the problem raised by previous

research regarding the extended use case in

non-functional requirements modeling?

2. RQ 2: Why is an extended use case important

to use in non-functional requirements

modeling?

3. RQ 3: How to use extended use case to model

non-functional requirements?

B. Literature Sources

A source database which is used to search literature

be limited to the international journal sites to obtain the

journal with good quality, namely:

1. IEEE

2. Science Direct

3. ACM.

C. Keywords of Literature Search

Following keywords used to make search literature

associated includes some keywords. They are:

1. Extended Use Case

2. Non-functional Requirement

3. Modeling Non-functional Requirement

D. Literature Selection

Based on a guide on Walia and Caver there are

criteria inclusion and exclusion as an election paper

will be discussed [17]:

Inclusion Criteria:

1. The contents of the paper in accordance with to

be discussed by reading the abstract research.

2. The publication paper discussed at least 2010

years.

3. Only in the form of a journal or conferences.

4. Paper use English as the introductory language.

5. Include in topic criteria (information system,

software engineering, computer science, and

informatics, system).

6. Search literature in the international journal of

sites basis data.

Exclusion Criteria:

1. Topic not associated with discussion extended

use case on the non-functional requirements,

and do not cover questions research.

2. Paper does not use English as the introductory

language.

3. Besides journals and conferences with the year

2010 rising below years.

E. Extracting Data and Synthesis

The aim of the extraction data is to obtain

information accurate and consistent. The data including

in the extraction is identification, the name of the

writer, the publication, source, reference, methodology

data collection, data analysis and concept [19]. The

paper also takes additional of reference of main paper

who became the idea of making this review literature.

IV. RESULTS AND DISCUSSION

A. Results

Based on searches related to extended use case from

various international journals provider sites, the data

are obtained and presented in Table 1.

TABLE 1

THE RESULTS OF COLLECTING

JOURNALS/PAPERS

IEEE
Science

Direct
ACM Total

1.405 2.590 1.525 5.520

The results of the collecting of journals or papers

outlined in table 1 have been through the filtering step

by year, the title of the journal entries and the type of

content included in the scope of information

technology. So, from the total of the results of

collecting journals or paper can be classified by the

year of publication as shown in Figure 1.

Figure 1. Number of research (from 2010 to 2016)

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1836

From the graph above, it can be seen that the most

obtained keywords are in Science Direct. However, the

most widely discussed in literature come from the

IEEE. The following is the result of the selection of

papers used in this literature review based on the

suitability of the research that is able to answer both

predefined questions or the research questions. The

filter is done looking at the keywords used and by

reading the abstract from the paper that has been

obtained. Thus, there is a total of 30 papers referenced

in this literature review, as presented in Table 2.

TABLE 2

THE RESULTS OF INCLUSION AND

EXCLUSION

Database
Total

Retrieved

Final

Selection

IEEE

Science Direct

ACM

References from main

paper

1.405

2.590

1.525

4

12

5

9

4

B. Discussion

1) RQ1: What is the problem raised by previous

research regarding the extended use case in non-

functional requirements modeling?

Non-functional requirements are important to define

in elicitation step for developing software. When

developer defines the requirements of the system, that

must include in whole part of requirements. That is

why non-functional requirement needs more attention

to define in earlier step because if it does not, will be

barriers to successful implementation. There is some

research that shows problem with the complexity in

defining the non-functional requirement. Therefore, in

this section will resume the problem related to non-

functional requirement modeling. The problem raised

to find out the urgency of the importance of modeling

non-functional requirements. The Table 3 shows the

problem raised by some of related research:

A simple difference between non-functional and

functional requirements is the difference in how the

system should do something contrasting to what the

system will do [23]. Non-functional requirements are

rarely defined generally by using high levels, and it

needs to be considered to define those requirements in

detail while developing the software. Failure to meet

non-functional requirements in the software

development process will have an impact on the quality

of the software, and if improvements are made after the

system is implemented it will cost more expensive [24].

There have been many studies that model non-

functional requirements because of many types of non-

functional requirements that are so complex and

difficult to understand [4].

TABLE 3

THE PROBLEM RELATED EXTENDED USE

CASE

Problem Sources

Many types of non-functional

requirements (complexity)

The differences in functionality

requirements with non-functional

requirements are still unclear

Abandonment of non-functionality

requirement modeling

[4], [23], [24]

[22], [12]

[10], [22], [11]

The complexity in defining non-functional

requirements is due to unclear of the differences with

non-functional requirements. The discrepancies are

dependent on the details of the requirements document

agreed upon by the system owner and system

developer. However, the stakeholder’s difficulties in

expressing non-functional requirements also make

developers ignore the modeling of nonfunctional

requirements [22]. Nuseibeh said that non-functional

requirements are also referred as quality requirements

that are generally more difficult to express and measure,

so when analyzing it becomes difficult [20]. In non-

functional requirements modeling, extended use cases

can be a solution of complexity in modeling. This is

because extends relationship provides the ability to

capture many requirements that can be modeled in the

case. Extensions are a real use case but they change the

stages in an existing use case. Specifically, extensions

are used for specific changes in stages that occur for

example such as security, performance, and so on [21].

2) RQ2: Why is an extended use case important to use

in non-functional requirements modeling?

A use case is familiar tools for defining

requirements when developer develop the system based

on what the user needs. The use case has function

extended use case that can define such as non-

functional requirements. Modeling non-functional

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1837

requirements using extended use cases is so important,

given the importance of extended use cases in non-

functional requirements modeling as shown in Table 4.

TABLE 4

THE IMPORTANCE OF EXTENDED USE

CASE IN NON-FUNCTIONAL REQUIREMENT

Importance Sources

The importance of modeling non-

functional requirements from a

developer's point of view

The importance of identifying and

defining non-functional requirements

in software requirements specification

The importance of modeling non-

functional requirements in UML design

The importance of using an extended

use case in non-functional

requirements modeling

The importance of measuring

complexity in non-functional

requirements modeling

[7], [10], [25]

[8], [11], [12],

[26]

[6], [14], [15],

[27], [28]

[4], [16], [29]

[4],[14]

Regarding non-functional requirements, non-

functional requirements are important to define

because these requirements play a vital role in software

development [27]. But of course, the definition of non-

functional requirements is not easy considering there

are 114 non-functional requirements that are defined

[30] that lead to complexity in defining. However,

when referring to ISO 9126 [7], non-functional

requirements can be classified into only 6 major non-

functional requirements thus helping the process of

defining non-functional requirements and reducing the

potential for complexity in non-functional requirements

modeling. Based on table 4 related to the importance of

extended use case is elaborated on the basis of several

points of view from the developer's point of view

([7],[10], [25]) and the analyst's point of view ([8], [11],

[12],[26]).

Several methods and strategies have been

undertaken to model non-functional requirements to

meet non-functional requirements modeling standard

[25]. Defined requirements need to be defined by

modeling those requirements into UML and need to

create schemes for non-functional requirements [26],

and one of them is by modeling non-functional

requirements using extended use cases [4]. Several

studies have been conducted by adapting the concept of

extended use cases [29] in non-functional requirement

modeling that emphasizes the indicators used to

support functional requirements. Extended use cases

are easier to use for modeling non-functional

requirements because the more familiar use case

concepts are used on functional requirements by adding

an <<extends>> relationship as well as measured

aspects according to non-functional requirements [28],

which will make it easier to perform annotations on

modeling requirements, especially non-functional

requirements. So based on the reason why the extended

use case is more suitable for modeling non-functional

requirements than other methods is because: 1) an

extended use case is easier to use in modeling non-

functional requirements; 2) use case is more familiar to

use in software requirement modeling; 3) extended use

case can minimize errors in software requirement and

failure in software development; 4) the ease of

annotation in non-functional requirement modeling

using extended use case.

3) RQ3: How to use extended use case to model non-

functional requirements?

Based on the literature review that explained in the

previous section, can be solved the problem of the

complexity of defining non-functional requirements

using extended use case. So, in this section will give

the detail step for modeling non-functional

requirements with an extended use case. In this section,

the explanation about how to modeling non-functional

requirements is described in step by step. The method

is not only about the extended use case, but also the

other methods will be mentioned in this section. Thus,

the difference between extended use case and the

others can be considered in modeling non-functional

requirements.

There is a semi-supervised approach for modeling

non-functional requirements. A semi-supervised

approach is natural language description that

transformed into the textual specification as known as

eliciting step in requirement analysis. There are few

steps to model non-functional requirements with a

semi-supervised approach as figure 2. First, Learning

phase including specification of requirements by

categorized the requirement with a label. Then, in the

learning phase, Pre-processing is a step for describing

how unstructured documents describing requirements

are transformed into suitable representations to be used

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1838

as input for machine learning algorithms through the

application of a number. Then, in the next subsection,

To reach the goal (requirements) so the Expectation

Maximization (EM) strategy is implemented with naïve

Bayesian classifiers. Second, Classification step has

classified the category from Semi-Supervised Learning

(EM) step. Third, the analysts will receive suggestions

about a possible classification of the remaining

requirements and they can give feedback to refine

classification in an iterative process. Finally, non-

functional requirements will be explained in natural

language that makes the analyst well-understand about

what the exactly non-functional requirement [8]. The

advantages of using semi-supervised approach are less

effort in labeling requirement, feedback from analyst

will improve, help the analyst to manages the

requirements. But, the disadvantages of using this

approach are the categorized requirement can arise the

noise in texts stemming from variations in the

vocabulary employed by elicitation teams. Elicitation

teams are not always in the same domains, thus semi-

supervised classification needs a few labeled

requirements that belong to project in progress.

Figure 2. The Semi-Supervised Approach[8]

The other approach for modeling non-functional

requirements is classified from SRS Documents and

combine with thematic roles. Thematic roles are used

to define the thematic relations in the sentences written

in natural language. There are some fit criteria for non-

functional requirement using IEEE definitions of

different NFRs and mapping it with thematic roles.

Thus, there is three phase for defining non-functional

as described in figure 3.

It starts from giving SRS as an input for the first step

of design for document pre-processing. Second, giving

the annotation by classifying annotated sentences into

various non-functional requirements classes. The third

step is classification process by using thematic roles

and fit criteria, contains typical text mining operations

using ANNIE (a Nearly-New Information Extraction

System) components. ANNIE as tools for tokenization

process. Then, the resulting sentences are fed to

ANNIE POS Tagger for tagging parts of speech, next

Multilingual Noun Phrase Extractor (MuNPEx) is used

as a noun chunker and along with NE transducer. Then,

the other tools such as, ANNIE VP Chunker (for verb

groups chunking), GATE Morphological Analyzer,

Number Tagger (for tagging numbers), Measurement

Tagger (for tagging measurable units), along with

ReqGazetteer (contains various gazetteers which help

in annotating modality) are used to extract various

thematic roles within the requirement documents

automatically. Finally, classification takes place using

these annotated thematic roles and fit-criteria for each

non-functional requirements class [11]. The advantages

of using this approach are the identification of non-

functional requirements more detail as classified in

subclasses. This approach also minimizes the stress and

labor of designer and analyst in identifying non-

functional requirements. But, the disadvantage of this

approach is needed more extra time for classified the

non-functional requirements in a large amount of non-

functional requirements categories.

Figure 3. Classification non-functional requirement using

SRS document and themat ic ro les [11]

Non-functional requirements can be also modeled

by using a pattern-based approach to design non-

functional requirements and integrate the design result

into existing functional UML models [13] which is

described in figure 4. There are five main steps of

pattern-based approach for modeling non-functional

requirements which consist of 1) non-functional

requirement analysis (identifying and refine non-

functional requirements); 2) tactic and patterns-based

non-functional requirements design; 3) design model

integration; 4) integrating non-functional requirements

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1839

related models into existing UML design models; 5)

analyze next non-functional requirement tactic.

The advantages of using this method are 1) could be

obtained more comprehensive design models which

consider both functional requirements and non-

functional requirements; 2) by using the patterns of

previous design to denote the general design of tactics

will be an effective way to reuse the tactic design

knowledge. But the disadvantages are: 1) at an early

stage before there is a pattern, it is difficult to modeling

non-functional requirements using this method; 2) if

the pattern is different then it will take a lot of time to

modeling it.

Figure 4. Pattern-based approach to design non-functional

requirements [13]

Another method that can be used for modeling non-

functional requirements is agile requirements approach

[22]. By using this method, not only modeling

functional and non-functional requirements of the

system from software developer perspective but also

modeling business process from the business owner

perspective. There are 7 steps in this model as

described in figure 5 which consists of 1) enumerate

business goals from the need of software; 2) design

diagram business process; 3) requirements definition

meeting; 4) pattern search; 5) define business process;

6) define functional and non-functional requirements;

and 7) pattern addition. The advantages of this

approach are: 1) it has allowed better self-expression

on the part of the micro-business owner by combining

the use of goals, business process model, and non-

functional requirements model. 2) requirements

documents have been produced quickly without serious

compromises by using pattern repository. But the main

disadvantage of this method is less specific on

modeling non-functional requirements and it will be

causing misleading when modeling non-functional

requirements using this method.

 Non-functional requirements can be also modeled

using requirement description schema (RDS) [26]. It is

an XML-based versatile specification approach for the

structural representation of functional and non-

functional requirements. The Requirements can be

simple or complex in the sense that they represent the

functional and non-functional behavior of a system

often requiring an interaction, dependency and priority

selection. There are five stages of modeling non-

functional requirements using RDS ie: 1) requirement

specification with the interchangeable format; 2)

mapping requirement engineering phase to design

phase; 3) requirement artifacts selection; 4)

transformation of requirements to RDS format with

GUI; 5) linkage with XML-based security standards.

The advantages of using this method are efficient to

managing requirement metadata and comprehensive

artifacts of requirements like status, priority, version,

stability, elicitation source etc. But the disadvantages

using this method are: 1) it must understand XML first

before modeling the requirements; 2) it is too difficult

and takes a lot of time to model more complex

requirements.

Figure 5. The Agile Requirements Elicitation Approach [22]

Zheng at al proposed an outline to model non-

functional requirements using extended use case as

described in figure 6 [2]. First, identify the

requirements and define actors and use case for initial

use case model. The requirements of the system

include functional requirement and non-functional

requirements. The actors are defined by the summary

of their roles in the use case. And the use case itself is

commonly defined by using the primary and alternative

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1840

scenarios from each actor. Second, from the use case

model, is refined by identifying extensions (the non-

functional requirements) and inclusions (the functional

requirements) of the use case. The use case model is

refined by identifying extensions and inclusions and

add those refinements on use case model. Third,

describe the non-functional requirements at the key

association points in the use case model. Non-

functional requirements defined as global properties of

the system which limit the functional requirement.

Fourth, describe architectural policies at platform-

independent level through architectural policy

scenarios which allow specifying a valid value for each

dimension. The last step of the proposed outline is

identified aspects in the requirement analysis phase for

it makes it possible to begin tackling the problem of

tangling scattering of the requirement as early as in

requirement analysis phrase.

The security aspect is one of type non-functional

requirements. Security requirement can be modeled by

an extended use case in 8 step [8]. First, Specify the

actors who will be working with the system as a key

user. Second, identify dependencies between actors

who have different job desk with others, so the

developer can find the particular actor. Third, Identify

typical objects of the application core. In this step,

specified what module or functional that system will

have. From that categories, the developer knows how

the system works flow. Fourth, Analyze tasks of the

actors within the system. In this step, link what the key

user's job desk with the application core process, then

specify the task for our key user. Fifth, Elaborate use

case from the tasks as well as described it in use case

diagram. Sixth, map typical objects of the application

core to the actors and define access policies. Then,

Extend the application core with security aspect such

as <<integrity>>, <<secrecy>>, etc. In the end, draw a

security extension of the use case into application core

which links with actors.

Another modeling approach which developed by [4],

proposed 4 steps to modeling non-functional

requirements using extended use case. First, identify

use cases for the kernel which deals with functional

requirements of the system. Kernel captures system

functionality from the perspective of actors. The kernel

must be kept simple and small by including only use

cases with has a direct link to the actor. Second,

mapping the non-functional requirement to use case

model in the kernel by adding another layer outside the

kernel. Third, Identify applicable condition and non-

functional requirements case which is black box view

of potential non-functional requirements to be defined.

An applicable condition is associated with non-

functional requirements which include constraint or

condition required to implement the non-functional

requirement in a system. Last, evaluating the

complexity of use case, which defined as the relation of

a use case to relationships.

Figure 6. Modeling Non-functional Requirements using

Extended Use Case [2]

From the previous research paper, conducted a

summary of those papers to modeling non-functional

requirements with an extended use case. There are

eight step for modeling non-functional requirements

with an extended use case which presented in figure 7.

First, identify the requirement of the system that
includes functional and non-functional in general. Then,
specify the actors that help the developer in eliciting
the requirements as known as product champion. Next
step, identify dependencies between actors such as
actor categories that describe in specific job desk (i.e:
admin, teller, etc). Then, identify use cases which deal
with functional requirements of the system. Then,
define the primary and alternative scenario for each
actor such as the primary activity that user do in
routined with the system. Next, identify extensions as
called as non-functional requirement and inclusion as
called as the functional requirement. The difference of
this requirement is from the notation of non-functional
requirement "<<example>>" beside functional system
does not need that notation for modeling the
requirements. Then, describe non-functional
requirements at the key association points. In the end,

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1841

evaluate the complexity of the use case that drew. The
complexity of use case comes from the relationships
between use case like usage or extension or include or
inherit which will add the complexity of use case [4].

Identify the requirements

Specify the actors

Identify dependencies

between actors

Identify use cases which

deals with functional

requirements of the system

Define the primary and

alternative scenarios for each

actor

Identify extensions (the non-

functional requirements) and

inclusions (the functional

requirements)

Describe the non-functional

requirements at the key

association points

Evaluating the complexity of

use case
Figure 7. The proposed approach to modeling non-

functional requirements using extended use case

4) Non-functional Requirements and Extended Use

Case

The importance of modeling non-functional

requirements in the elicitation of software requirements

and the model which capable of modeling those

requirements is extended use case. The advantages of

an extended use case in modeling non-functional

requirements can minimize errors in software

compliance and failure in software development.

Before modeling, non-functional requirements must

know what non-functional requirements that should be

modeled on use case since there are many types of non-

functional requirements. The non-functional

requirements that can be modeled in the extended use

as shown in Table 5.

Based on the search results of international

journals database (IEEE, Science Direct, and ACM),

the studies related to non-functional requirements

modeling using extended use case from year to year

shows that the number of research has increased and

decreased, especially in 2016 there was a decrease in

the number of studies. This decrease in the number of

studies provides evidence that more studies have

prioritized functional requirements modeling than

studies on non-functional requirements modeling. This

is supported by studies that have been reviewed that

say that non-functional requirements are considered

secondary requirements and there is no clear separation

between non-functional and functional requirements as

it is considered to be a single entity. This is based on a

lack of studies on the modeling of non-functional

requirements so that the complexity in defining non-

functional requirements is still felt by software

developers and stakeholders.

TABLE 5

NON-FUNCTIONAL REQUIREMENTS IN
EXTENDED USE CASE

Non-functional

Requirements
Project Sources

Security/ security

critical system

Availability,

performance,

robustness, security

Visib ility,

availability,

performance,

analyzability,

manageability

Completeness,

correctness,

redundancy

Security and

accessibility

Adaptivity

Internet-based

business application

Cafeteria ordering

system

Dicode (Data-

intensive

collaboration and

decision making) on

EU Framework 7

project

1. E-Post Office

System

2. Back to My Village

3. Online Project

Management

4. Online Job Portal

System

5. Real Estate

Computer Game

6. Online Shopping

Mall

7. Online Stock

Market

8. Study System for

Educational

Institutes

Role-Based Access

Control (RBAC)

project on the

purchasing process

News provider

services project

zan.com

[3],[10]

[4]

[5]

[15]

[23]

[29]

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1842

One method that can be used to model non-

functional requirements is the extended use case. A use

case represents an interaction between a user (actor)

and the system which single unit of use case has a

description which describes the functionality of the

software system[4]. In the beginning stages of software

development, most of the analyst must design the

functionality of the system with an use case diagram

and it is needed by the programmer to build a system

base on that diagram. So it can be assumed that in

every software development, developers are

accustomed to using an use case diagram to design

functional requirements of a system. Besides that, a use

case diagram has relationship feature which connects

between actor and system or even between use case. In

UML defines two types of relationships between use

case are include and extend relationships. Two use case

is related by the <<extends>> relationship if one use

case (know as the base use case) implicitly

incorporates the behavior of another use case (know as

extension use case which may be contained non-

functional requirements) at a specified location [16].

There are some approaches for modeling extended use

case, such as a semi-supervised [8], classification non-

functional requirement using SRS document and

thematic roles [11], a pattern-based [13], agile

requirements approach [22] and requirement

description schema (RDS) [26]. But, from all of the

approach mentioned still have disadvantages, such as

need more knowledge or skill to use that approach, less

specific on modeling non-functional requirements, and

need more extra time for classified the nonfunctional

requirements in a large amount of non-functional

requirements categories. So based on those

explanations it is very easy to use the extended use

case in modeling non-functional requirements.

The complexity in defining non-functional

requirement is not the necessary problem when using

extended use case. From the previous research paper,

conducted a summary of those papers to modeling non-

functional requirements with an extended use case.

There are eight steps for modeling non-functional

requirements with an extended use case which

presented in figure 2. First, identify the requirement of

the system that includes functional and non-functional

in general. Then, specify the actors that help the

developer in eliciting the requirements as known as

product champion. Next step, identify dependencies

between actors such as actor categories that describe in

specific job desk (i.e: admin, teller, etc). Then, identify

use cases which deal with functional requirements of

the system. Then, define the primary and alternative

scenario for each actor such as the primary activity that

user do in routined with the system. Next, identify

extensions as called as non-functional requirement and

inclusion as called as a functional requirement. The

difference of this requirement is from the notation of

non-functional requirement "<<example>>" beside

functional system does not need that notation for

modeling the requirements. Then, describe non-

functional requirements at the key association points.

In the end, evaluate the complexity of the use case that

developer draw. Evaluation of complexity means that

developer deal with the stakeholder about elicitation

result. Thus, the developer verifies the requirement that

stakeholder really needs and already represent what the

system needs from both requirements (functional and

non-functional).

Related to the problems of non-functional

requirements in software development it is necessary to

define non-functional requirements in the early stages

of software development by specifying non-functional

requirements. There are too many kinds of non-

functional requirements categories like mentioned

before. Besides, non-functional requirements are one of

the keys criteria to distinguish between many types of

system in the software development. The non-

functional requirements that can be modeled with

extended use cases are security ([3],[23]), availability

([4], [5]), performance ([4], [5]), robustness [4],

visibility [5], analyzability[5], manageability [5],

completeness [15], correctness [15], redundancy [15],

accessibility [23] and adaptivity ([23] , [29]). So, from

many categories of requirements, it has been

demonstrated that extended use cases are capable to

model non-functional requirements as well as

providing ease in understanding the non-functional

requirements on the software development phase.

V. CONCLUSION AND FUTURE WORK

One of the causes that make developers and

stakeholders ignore the definition of non-functional

requirements is because non-functional requirements

are considered complex and difficult to translate into

an easily understood model. Non-functional

requirements are important to be defined in the early

stages of software development as well as defining

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1843

functional requirements. If non-functional requirements

do not define at the early stages of software

development then it affects the quality of the software

and will take a lot of repair costs after the

implementation of the system. Thus, the extended use

case is one model that is able to define non-functional

requirements that have been proven by previous

research. The use of an extended use case makes it easy

and understandable because software developers have

understood the use case concept and used the

<<extend>> relationship to connect it to functional

requirements.

There are eight steps for modeling non-functional

requirements with an extended use case. First, identify

the requirement of the system that includes functional

and non-functional requirements. Then, specify the

actors. Next, identify dependencies between actors.

Then, identify use cases which deal with functional

requirements of the system. Then, define the primary

and alternative scenario for each actor such as the

primary activity that user do in routined with the

system. Next, identify extensions as called as non-

functional requirements and inclusion as called as the

functional requirements. Then, non-functional

requirements are described by the key association

points. In the end, evaluate the complexity of the use

case which has been drawn.

There are two points that we can conclude that the

ease of using extended use case in modeling non-

functional requirement because the annotation is

familiar to use in software development. Besides the

complexity of the other approach is difficult to

modeling the non-functional requirement ([8], [11],

[13], [22], [26]). The complexity in general from that

approach are stakeholder and developer need special

skill to use that approach and need more extra time to

categorized the non-functional requirement.

Furthermore, an extended use case can model various

categories of non-functional requirements such as

security, availability, performance, robustness,

visibility, analyzability, manageability, correctness,

redundancy, accessibility and adaptivity.

In the future research, the literature review paper on

the extended use case in modeling non-functional

requirements is expected to trigger the interest of other

researchers to develop papers or journals related to

non-functional requirements modeling using the

extended use case. Furthermore, other studies of

complexity that may occur due to the use of extended

use cases in other categories as well as attempt to

model on other types of projects. Thus, it is expected

that in modeling requirements, not just functional

requirements that need to be modeled, but also non-

functional requirements need to be modeled by using

an extended use case.

VI. REFERENCES

[1] M. Rahman, S. Ripon, et al., “Elicitation and modeling

non-functional requirements-a pos case study,” arXiv

preprint arXiv:1403.1936, 2014.

[2] X. Zheng, X. Liu, and S. Liu, “Use case and non -

functional scenario template based approach to identify

aspects,” in Computer Engineering and Applications

(ICCEA), 2010 Second International Conference on ,

vol. 2, pp. 89–93, IEEE, 2010.

[3] G. Popp, J. Jurjens, G. Wimmel, and R. Breu, “Security-

critical system development with extended use cases,”

in Software Engineering Conference, 2003. Tenth Asia-

Pacific, pp. 478–487, IEEE, 2003.

[4] H. Kaur and A. Sharma, “A measure fo r modelling non-

functional requirements using extended use case,” in

Computing for Sustainable Global Development

(INDIACom), 2016 3rd International Conference on ,

pp. 1101–1105, IEEE, 2016.

[5] F. Yang-Turner and L. Lau, “Extending use case

diagrams to support requirements discovery,” in

Requirements Engineering for Systems, Services and

Systems-of Systems (RESS), 2011 Workshop on , pp. 32–

35, IEEE, 2011.

[6] U. I. Hernández, F. J. Á. Rodríguez, and M. V. Mart in,

“Use processess modeling requirements based on

elements of bpmn and uml use case diagrams,” in

Software Technology and Engineering (ICSTE), 2010

2nd International Conference on, vol. 2, pp. V2–36,

IEEE, 2010.

[7] J. Zou, L. Xu, M. Yang, X. Zhang, and D. Yang,

“Towards comprehending the non-functional

requirements through developers eyes: An exploration

of stack´ overflow using topic analysis,” In formation

and Software Technology, vol. 84, pp. 19–32, 2017.

[8] A. Casamayor, D. Godoy, and M. Campo,

“Identification of non-functional requirements in textual

specifications: A semi-supervised learning approach,”

Information and Software Technology, vol. 52, no. 4,

pp. 436–445, 2010.

[9] X. L. Zhang, C.-H. Chi, C. Ding, and R. K. Wong,

“Non-functional requirement analysis and

recommendation for software services,” in Web Services

(ICWS), 2013 IEEE 20th International Conference on ,

pp. 555–562, IEEE, 2013.

[10] A. Olmsted, “Secure software development through

non-functional requirements modeling,” in In formation

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Nina Fadilah Najwa et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1832-1844

 1844

Society (i-Society), 2016 International Conference on,

pp. 22–27, IEEE, 2016.

[11] P. Singh, D. Singh, and A. Sharma, “Classificat ion of

non-functional requirements from srs documents using

thematic roles,” in Nanoelectronic and Information

Systems (iNIS), 2016 IEEE International Symposium on ,

pp. 206–207, IEEE, 2016.

[12] A. Mahmoud, “An information theoretic approach for

extracting and tracing non-functional requirements,” in

Requirements Engineering Conference (RE), 2015 IEEE

23rd International, pp. 36–45, IEEE, 2015.

[13] Y. Liu, Z. Ma, R. Qiu, H. Chen, and W. Shao, “An

approach to integrating non-functional requirements into

uml design models based on nfr-specific patterns,” in

Quality Software (QSIC), 2012 12th International

Conference on, pp. 132–135, IEEE, 2012.

[14] R. K. Chopra, V. Gupta, and D. S. Chauhan,

“Experimentation on accuracy of non-functional

requirement prioritizat ion approaches for different

complexity projects,” Perspectives in Science, vol. 8,

pp. 79–82, 2016.

[15] S. Tiwari and A. Gupta, “Does increasing formalis m in

the use case template help?” in Proceedings of the 7th

India Software Engineering Conference, p. 6, ACM,

2014.

[16] M. Misbhauddin and M. Alshayeb, “Extending the uml

use case metamodel with behavioral information to

facilitate model analysis and interchange,” Software &

Systems Modeling, vol. 14, no. 2, pp. 813–838, 2015.

[17] O. Rebollo, D. Mellado, and E. Fernández-Medina, “A

systematic rev iew of information security governance

frameworks in the cloud computing environment.,” J.

UCS, vol. 18, no. 6, pp. 798–815, 2012.

[18] Y. Hakami, S. Tam, A. H. Busalm, and A. C. Husin, “A

review of factors affecting the sharing of know ledge in

social media.,” Science International, vol. 26, no. 2,

2014.

[19] A. S. Pillai et al., “A study on the software requirements

elicitation issues-its causes and effects,” in In formation

and Communication Technologies (WICT), 2013 Third

World Congress on, pp. 245–252, IEEE, 2013.

[20] K. Alghathbar, “Representing access control policies in

use case.,” Int. Arab J. Inf. Technol., vol. 9, no. 3, pp.

268–275, 2012.

[21] M. R. Dube and S. K. Dixit , “Extended behavioral

modeling using structured use cases and profiles,” in

Proceedings of the International Conference and

Workshop on Emerging Trends in Technology, pp. 737–

740, ACM, 2010.

[22] R. Macasaet, L. Chung, J. L. Garrido, M. Noguera, and

M. L. Rodríguez, “An agile requirements elicitation

approach based on nfrs and business process models for

micro -businesses,” in Proceedings of the 12th

International Conference on Product Focused Software

Development and Process Improvement , pp. 50–56,

ACM, 2011.

[23] J. Eckhardt, A. Vogelsang, and D. M. Fernández, “Are"

non-functional" requirements really non-functional? an

investigation of non-functional requirements in

practice,” in Software Engineering (ICSE), 2016

IEEE/ACM 38th International Conference on, pp. 832–

842, IEEE, 2016.

[24] A. Buarque, J. Castro, and F. Alencar, “The ro le of nfrs

when transforming i* requirements models into oo-

method models,” in Proceedings of the 28th Annual

ACM Symposium on Applied Computing , pp. 1305–

1306, ACM, 2013.

[25] Y. Bin, J. Zh i, and C. Xiaohong, “An approach for

selecting implementation strategies of non-functional

requirements,” in Proceedings of the Fourth Asia-

Pacific Symposium on Internetware, p. 20, ACM, 2012.

[26] T. Shah and S. Patel, “A novel approach for specifying

functional and non-functional requirements using rds

(requirement description schema),” Procedia Computer

Science, vol. 79, pp. 852–860, 2016.

[27] J. Eckhardt, D. M. Fernández, and A. Vogelsang, “How

to specify non-functional requirements to support

seamless modeling? a study design and preliminary

results,” in Empirical Software Engineering and

Measurement (ESEM), 2015 ACM/IEEE International

Symposium on, pp. 1–4, IEEE, 2015.

[28] M. Asadi, S. So ltani, D. Gasevic, M. Hatala, and E.

Bagheri, “Toward automated feature model

configuration with optimizing non-functional

requirements,” Information and Software Technology,

vol. 56, no. 9, pp. 1144–1165, 2014.

[29] M. Luckey, B. Nagel, C. Gerth, and G. Engels, “Adapt

cases: extending use cases for adaptive systems,” in

Proceedings of the 6th International Symposium on

Software Engineering for Adaptive and Self-Managing

Systems, pp. 30–39, ACM, 2011.

[30] D. Mairiza, D. Zowghi, and N. Nurmuliani, “An

investigation into the notion of non-functional

requirements,” in Proceedings of the 2010 ACM

Symposium on Applied Computing, pp. 311–317, ACM,

2010.

