
CSEIT1833675 | Received : 10 April 2018 | Accepted : 25 April 2018 | March-April-2018 [(3) 3 : 1870-1875]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1870-

Load Rebalancing File Distributed System in Cloud
Prof. Vishal S. Patil, Tarun S. Pilley, Azhar Sheikh, Chetan Patil

Computer Science & Engineering Department, Amravati University / Anuradha Engineering College, Chikhali,

Maharashtra, India

ABSTRACT

Load Rebalancing Distributed file systems are the building blocks for cloud computing software based on the

one of the Algorithm that is Map Reduce programming paradigm Algorithm. In a such file systems of this

Procedures, nodes at the time serve computing and mass storage functions, The file is Subdivided into a number

of chunks allocated in nodes so that Map Reduce tasks can be performed in parallel over the nodes. In a cloud

computing System, failure is the normal, because of the so many servers are connected and nodes may be

upgraded, replaced, and placed in the system of the Load Balancing. Files can be created, deleted, and it will

edited. This results in load imbalance in a distributed file system; that is, the file chunks are not

Separated as uniformly among the nodes of the systems.

Keywords: Load Management, Algorithm Design and analysis, Cloud Computing Structure.

I. INTRODUCTION

Cloud Computing is a network type technology. In

clouds of Load Rebalancing system , there is Server

points in Network that will be connected to many

Nodes in the System structures , if there is passing of

the information of data from server to the clients

nodes, in the middle of the servers and the clients

node there is a load balancing server to balance the

incoming load from the server and it will be the

check to the nodes while passing the data if there is

having space in nodes to transfer the information of

data, if there is no space to adjust incoming data in

nodes, then it will be check another one nodes that

having in the sequence , if second nodes having that

much of space the data will be store there, this is load

balancing in the cloud system or any other system

structure. Enabling technologies for clouds include

the MapReduce programming paradigm , in this

concept there is MapReduce Algorithm is used for

distributed file systems virtualization, and so forth

Proposed system:

 The load of each virtual server is stable

over the timescale when load balancing is

performed.

 Load balancing is performed in

proximity-aware manner, to minimize

the overhead of load movement

(bandwidth usage) and allow more

efficient and fast load balancing.

Figure 1

http://ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Prof. Vishal. S. Patil et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1870-1875

1871

Block Diagram :

Literature Survey:

Existing solutions to balance load in DHTs incur a

high overhead either in terms of routing state or in

terms of load movement generated by nodes arriving

or departing the system. In this paper, we propose a

set of general techniques and use them to develop a

protocol based on Chord, called Y0, that achieves

load balancing with minimal overhead under the

typical assumption that the load is uniformly

distributed in the identifier space.

In particular, we prove that Y0 can achieve near-

optimal load balancing, while moving little load to

maintain the balance and increasing the size of the

routing tables by at most a constant factor. Using

extensive simulations based on real-world and

synthetic capacity distributions, we show that Y0

reduces the load imbalance of Chord from O (log n)

to a less than 3.6 without increasing the number of

links that a node needs to maintain. In addition, we

study the effect of heterogeneity on both DHTs,

demonstrating significantly reduced average route

length as node capacities become increasingly

heterogeneous. For a real-world distribution of node

capacities, the route length in Y0 is asymptotically

less than half the route length in the case of a

homogeneous system.

1- Chord: A Scalable Peer-to-peer Lookup Protocol

for Internet Applications

A problem that peer-to-peer applications is the

efficient location of the node that stores in a data

item. This paper presents Chord, a distributed lookup

protocol that addresses this problem. Chord provides

support for just one operation: given a key, it maps

the key onto a node.

Data location can be freely and easily implemented

top of Chord by associating a key with each data item,

and storing the key/data pair at the node to which

the key maps. Chord adapts efficiently as nodes join

and leave the system, and can answer queries even if

the system is continuously changing. Results from

theoretical analysis and simulations show that Chord

is scalable .

MapReduce: Simplified Data Processing on Large

Clusters :

MapReduce is a programming model and an

associated implementation for processing and

generating large data sets. Users specify a map

function that processes a key/value pair to generate a

set of intermediate key/value pairs, and a reduce

function that merges all intermediate values

associated with the same intermediate key. Many

real world tasks are expressible in this model, as

shown in the paper.

Programs written in this functional style are

automatically parallelized and executed on a large

cluster of commodity machines. The run-time system

takes care of the details of partitioning the input data,

scheduling the program's execution across a set of

machines, handling machine failures, and managing

the required inter-machine communication. This

allows programmers without any experience with

parallel and distributed systems to easily utilize the

resources of a large distributed system.

Simple Efficient Load Balancing Algorithms for Peer-

to-Peer Systems

We give two new load balancing protocols whose

provable performance guarantees are within a

constant factor of optimal. Our first protocol balances

the distribution of the keyaddress space to nodes,

which yields a load-balanced system when the DHT

maps items “randomly” into the address space. To our

knowledge, this yields the first P2P scheme

simultaneously achieving O(logn) degree, O(logn)

look-up cost, and constant-factor load balance

(previous schemes settled for any two of the

three).Our second protocol aims to directly balance

the distribution of items among the nodes

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Prof. Vishal. S. Patil et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1870-1875

1872

DATAFLOW DIAGRAM:

LEVEL 1:

Figure 2

LEVEL 2:

Figure 3

LEVEL 3:

Figure 3

USER DIAGRAM:

Figure 4

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Prof. Vishal. S. Patil et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1870-1875

1873

CCLASS DIAGRAM:

Figrue 5

MODULES:

1) Chunk creation

2) DHT formulation

3) Load balancing algorithm

CHUNK CREATION

A file is partitioned into a number of chunks

allocated in distinct nodes so that Map Reduce Tasks

can be performed in parallel over the nodes. The load

of a node is typically proportional to the number of

file chunks the node possesses.

Because the files in a cloud can be arbitrarily created,

deleted, and appended, and nodes can be upgraded,

replaced and added in the file system, the file chunks

are not distributed as uniformly as possible among

the nodes. Our objective is to allocate the chunks of

files as uniformly as possible among the nodes such

that no node manages an excessive number of

chunks.

DHT Formulation

DHTs enable nodes to self-organize and repair while

constantly offering lookup functionality in node

dynamism, simplifying the system provision and

management. The chunk servers in our proposal are

organized as a DHT network. Typical DHTs

guarantee that if a node leaves, then its locally hosted

chunks are reliably migrated to its successor; if a

node joins, then it allocates the chunks whose IDs

immediately precede the joining node from its

successor to manage

LOAD BALANCING ALGORITHM

In our proposed algorithm, each chunk server node I

first estimate whether it is under loaded (light) or

overloaded (heavy) without global knowledge. A

node is light if the number of chunks it hosts is

smaller than the threshold.

Load statuses of a sample of randomly selected nodes.

Specifically, each node contacts a number of

randomly selected nodes in the system and builds a

vector denoted by V. A vector consists of entries, and

each entry contains the ID, network address and load

status of a randomly selected node.

Weighted Balance:

Assign more traffic to a faster link or less traffic to a

connection with a bandwidth cap. Set a weight on

the scale for each connection and outgoing traffic

will be proportionally distributed according to the

specified ratio

Figrue 6

Algorithm:

Load balancing algorithms help you easily fine-tune

how traffic is distributed across connections. Each

deployment has a unique setup, and Peplink's

enterprise grade load balancing features can fulfil all

of your special requirements. Create your own rule

with the following algorithms and you can sit back

and enjoy the high performance routing that Peplink

brings to you.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Prof. Vishal. S. Patil et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1870-1875

1874

Priority

Route traffic to your preferred link as long as it's

available.

 Arrange the connection priority order, and

traffic will be routed through the healthy link

that has the highest priority in the list. Lower

priority links will only be used if the current

connection fails.

Figrue 7

Figrue 8

Overflow

Prevent traffic flow from slowing down when the

connection runs out of available bandwidth.

 Drag and drop to arrange the connection

overflow order and the highest priority link will

route traffic as long as it has not been congested.

Once it saturates, the lower priority links will

start routing traffic.

Figrue 9

SLB - Server Load Balance - Centralised

Figrue 10

SLB: Server Load Balancing; Server points in

Network that will be connected to many Nodes in

the System structures , if there is passing of the

information of data from server to the clients nodes,

in the middle of the servers and the clients node

there is a load balancing server to balance the

incoming load from the server and it will be the

check to the nodes while passing the data if there is

having space in nodes to transfer the information of

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Prof. Vishal. S. Patil et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1870-1875

1875

data, if there is no space to adjust incoming data in

nodes, then it will be check another one nodes that

having in the sequence , if second nodes having that

much of space the data will be store there, this is load

balancing in the cloud system or any other system

structure.

Advantage:

 Nodes take more loads. Its benefits is its Node

take more Load to Connections

 Main the consistency and speed.

Disadvantage:

 Emerging distributed file systems in production

systems strongly depend on a central node for

chunk reallocation. This dependence is clearly

inadequate in a large-scale, failure-prone

environment because the central load balancer

is put under considerable workload that is

linearly scaled with the system size, and may

thus become the performance bottleneck and

the single point of failure.

II. CONCLUSION

Based on the study of load rebalance and conclusion

of load rebalance through distributed File System.

If we conclude the whole Scenario, here is nodes

are nothing but is Storage and system delivering

high performance and balance the maintenance in

the network traffic system. Load balancing define

that , there is not overloading of data in system

nodes, if there is no space in Node, then it will be

the choose the another node system in structure.

Load rebalance algorithm and Replica management

concepts are greatly enhanced and significantly

performs well than existing system.

III. REFERENCES

[1]. J. Dean and S. Ghemawat, "MapReduce:

Simplified Data Processingon Large Clusters," in

Proc. 6th Symp. Operating System Design and

Implementation (OSDI’04), Dec. 2004, pp. 137–

150.

[2]. S. Ghemawat, H. Gobioff, and S.-T. Leung, "The

Google File System," in Proc. 19th ACM Symp.

Operating Systems Principles (SOSP’03), Oct.

2003, pp. 29–43.

[3]. Hadoop Distributed File System,

ttp://hadoop.apache.org /hdfs/.

[4]. VMware, http://www.vmware.com/.

[5]. Xen, http://www.xen.org/

[6]. Apache Hadoop, http://hadoop.apache.org/.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

