
CSEIT1833678 | Received : 10 April 2018 | Accepted : 24 April 2018 | March-April-2018 [(3) 3 : 1804-1814]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1804

Fault Locating and Identifying with minimal Interaction in

Testing of Software Engineering Applications
Muzammil H Mohammed1,Faiz Baothman2

1Department of Information Technology College of Computers and Information Technology, Taif University,

Taif, Saudi Arabia
2Department of Computer Science College of Computers and Information Technology, Taif University, Taif,

Saudi Arabia

ABSTRACT

Combinatorial testing method may additionally substantially cut again checking out fee and increase software

program exceptional. By victimisation at suite generated with the aid of Combinatorial testing as input to

conduct black-container trying out towards a machine, at some stage in a action at regulation, there may also be

entirely part of all its parameters relevant to the defects in system and consequently the interaction by using

the ones partial parameters is critical trouble of triggering fault. If we can discover those parameters

appropriately, this could facilitate the software program package deal and checking out technique. This paper

proposes a completely unique algorithmic program named Fault Interaction Location to find those interactions

that cause device’s disasters and intervening time By applying this technique, testers will analyze and locate the

factors applicable to defects, so creating the approach of software program package trying out and debugging

simpler and further low-budget. The consequences of our study suggest that Fault Interaction Location plays

better compared with fault place techniques in combinatorial trying out due to its advanced effectiveness and

exactness.

Keywords: Test Suite, localization, Detection, Arrays, Debugging, Fault Interaction, Algorithm

I. INTRODUCTION

Combinatorial checking might considerably scale

back test price and increase quality of code [1]. it's

been verified to be effective particularly during a

code wherever faults return from the interactions of

its parameters [2]. Combinatorial testing might

observe the parameter interactions that trigger the

faults instead of localize it. If a test suit triggers the

fault of a system, it reflects that there exists one or a

lot of defects within the program [3–5]. However,

not all parameters within the test suit square measure

relevant to defects. If we tend to square measure able

to find a parameter within the test suit that's relevant

to the fault, we are able to apply this handy data to

facilitate the debugging method.

In combinatorial testing, the study on fault

interaction technique might be categorised into

adaptive technique and maladaptive technique

consistent with the dependence between further

check cases and running results [6, 7]. For

maladaptive ways, the generation of further check

cases doesn't trust the running results of original

check cases. Colbourn and McClary [8] gift a

maladaptive technique named Locating and

Detecting Arrays (LDA). supported basic celebrated

data like parameters’ range, values, and faults’ range,

the strategy applies 𝑡-way Locating and Detecting

Array to find faults in code. Mart´ınez et al. [9] gift a

self-adaptive formula supported Errors Locating

http://ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1805

Arrays (ELA) and analyze the formula quality.

However, this technique might solely be used

underneath the condition that the value’s range of

every parameter in software package isn't larger than

two. Hagar et al. [1] propose the strategy of Partial

Covering Array (PCA) that might be employed in the

software package with celebrated safe price, and it

presents a replacement combinatorial structure to get

group. Another class is thought as adaptive technique

[10],whose generation of further check cases depends

on the data given by the execution of original check

cases .Zeller and Hildebrandt [11] gift a typical

adaptive technique named Delta Debugging. This

technique is to spot the interaction that's relevant to

the faults by modifying the input parameters. For a

test suit that triggers the fault, modify a number of its

input parameters; if the changed test suit still triggers

the fault, then the changed parameters square

measure extraneous to fault; otherwise, the changed

parameters square measure associated with fault.

supported Delta Debugging, Z. Zhang and J. Zhang

[12] gift a technique named FIC. like Delta

Debugging, FIC modify one parameter during a test

suit with 𝑛 parameters once. Then repeat this

method 𝑛 times and also the token fault interaction is

calculated subsequently. A restraint of Delta

Debugging primarily based ways is that they might

solely be applicable to the test suit containing one

token fault interaction, First, when the execution of

original check cases, the check cases are divided into

two sets: FTS and PTS; the previous contains check

cases that trigger faults, whereas the latter contains

check cases that don't trigger faults. Then we tend to

determine the set of interactions lined by FTS

however not lined by PTS and name this set as

candidate faulty interaction set (canFIS). Second, we

tend to generate further check cases to pick

interactions in canFIS so the token fault interaction

set is obtained finally.

II. THEOREMS

Assume there's a System Under Test (SUT) with 𝑛

input parameters as 𝑃 = one, 𝑃2, 𝑃3, . . . , 𝑃𝑛}. For

any 𝑖 ∈ [1,], the vary of parameter 𝑃 𝑖 is denoted as 𝐷

𝑖. And combine ⟨𝑃𝑖, V⟩ is employed to indicate that

the worth of parameter 𝑃𝑖 is V, additionally denoted

as (𝑃𝑖.V).In this model, the vary of parameter 𝑃 a

pair of is 𝐷 a pair of =. The input parameter model of

SUT is denoted as SUT(𝑛 : (|𝐷|, |𝐷2|, |𝐷3|, . . . ,

|𝐷𝑛|)),which means SUT has 𝑛 input parameters and,

for every parameter 𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑛, the worth

numbers are|𝐷1|, |𝐷2|, |𝐷3|, . . . , |𝐷𝑛|, severally. For a

group of 𝑡 elements𝐼 = , if for any 𝑚, 𝑠, 𝑡, 1 ≤𝑚, 𝑠 ≤ 𝑡

≤ 𝑛, there area unit 𝑖𝑠, 𝑖𝑚∈ ; (𝑚 ≠ 𝑠, 𝑖𝑚≠𝑖𝑠), then we

tend to decision 𝐼 a 𝑡-way interaction.

Theorem 1. for two interactions 𝐼1 and 𝐼2, if one ⊂

𝐼2, then 𝑠𝑢𝑏𝑆𝑒𝑡(𝐼1) ⊂ 𝑠𝑢𝑏𝑆𝑒𝑡(𝐼 a pair of Proof. From

Definition three (subinteraction set), we are able to

grasp that 𝑖 ≠ Φ and for any 𝑖 ∈ subSet(𝐼1), 𝑖 ⊂ 𝐼1,

therefore 𝑖 ⊂ 𝐼2; specifically, subSet(𝐼1) ⊂ subSet(𝐼2).

Theorem 2. Divide (𝑚, 𝑡; (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑛)) into a

pair of sets:FTS and PTS. In FTS, all check cases

triggered the fault of the system, 𝑃𝑇𝑆 = (𝑚, 𝑡; (𝑃1, 𝑃2,

𝑃3, . . . , 𝑃𝑛)) − 𝐹𝑇𝑆; if 𝐼 is that the nominal fault

interaction of 𝐶𝐴, then 𝐼 ⊂ 𝑐𝑎𝑛𝐹𝐼𝑆.

Proof. From abstract thought one we are able to

grasp that, for any nominal fault interaction 𝑖 in (𝑚, 𝑡;

(𝑃1, 𝑃2, 𝑃3, ., 𝑃𝑛)), there's a failing action 𝑇 that

satisfies 𝑖 ∈ sunSet(𝑇). therefore 𝑖 ∈⋃𝑇∈FTS subSet(𝑇)

and 𝑖 ∈ ⋃𝑇∈PTS subSet(𝑇); that's, 𝑖 ∈canFIS..

Theorem 3. Use MFIS that denotes all nominal fault

interactions set of (𝑚, 𝑡; (𝑃1, 𝑃2, . . . , 𝑃𝑛)); for a

nominal fault interaction 𝑖, if 𝑖 ∈ 𝑐𝑎𝑛𝐹𝐼𝑆 and

𝑅(𝑎𝑑𝑑𝑇𝐹(𝑖)) = 𝑝𝑎𝑠𝑠,then 𝑀𝐹𝐼𝑆 ∩ ⋃𝐼∈𝑖 𝑠𝑢𝑏𝑆𝑒𝑡(𝐼) =

zero and 𝑀𝐹𝐼𝑆 ⊂ 𝑐𝑎𝑛𝐹𝐼𝑆 −⋃𝐼∈𝑖 𝑠𝑢𝑏𝑆𝑒𝑡(𝐼).

Proof. this might be directly over from Theorem a

pair of.

Theorem 4. For a 𝑡-way interaction 𝐼, the extra

action is 𝑇 = (𝐼). In subinteraction set of 𝑇, the

amount of interactions that don't belong to (𝐼) is 2𝑛−

2𝑡.

Proof. From Definition four we all know that

|subSet(𝑇)| = 2𝑛− one and |subSet(𝐼)| = 2𝑡− one,

within which 𝐼 is that the sub interaction of 𝑇. From

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1806

Theorem one we all know that subSet(𝐼) ⊂ subSet(𝑇).

So |subSet(𝐼) − subSet(𝑇)| = 2𝑛− 2𝑡.

III. FAULT INTERACTION LOCATION

ALGORITHM

3.1. Description of FIL. Theorem three and

Definition five give a screening technique for getting

the set of all token fault interactions from the set of

candidate fault interactions; once an interaction 𝐼

proves to be the fault interaction, we delete all the

parent interactions of 𝐼 from canFIS except 𝐼,

whereas we have a tendency to delete all the kid

interactions of 𝐼 from canFIS except 𝐼 once it proves

to not be the fault interaction. It has 2 input

parameters CA ANd (𝑇) and an output parameter

canFIS that is that the token fault interaction set.

usually the formula method can be divided into a

pair of phases. Generate the canFIS for fault location.

Firstly, the formula counts the amount of times that

the fault interaction exists in passed or unsuccessful

actions on an individual basis (steps (2) to (12)); then

the canFIS is screened out from take a look at case set

CA (steps (13) to (15)).Generate the token fault

interaction set (steps (16) to (20)). Steps (17) and (18)

describe the following: if a schema I may be a fault

interaction, then we have a tendency to delete all its

super interaction apart from I in canFIS. Steps (19)

ANd (20) describe the following: if an interaction

isn't a fault interaction, then we have a tendency to

delete all components in its sub interaction in canFIS.

(1) Implementation of set. The input of perform set is

AN interaction 𝐼, and its output is that the

subinteraction set of 𝐼. For 𝑛-way interaction 𝐼𝑛= , its

𝑡-way subinteraction may be a binary string (𝑏1, 𝑏2,

𝑏3, . . . , 𝑏𝑛), within which Σ𝑛𝑖=1𝑏𝑖= 𝑡; that's, a 𝑡-way

subinteraction of 𝐼𝑛 is = V𝑖𝑗∈ 𝐼𝑛∧ 𝑏𝑖𝑗= 1, within

which 𝑖1, 𝑖2, 𝑖3, . . . , 𝑖𝑡 don't seem to be adequate to

one another.

From Theorem four we all know that once

generating addition action 𝑇, we'll 1st make sure that

there's no token fault interaction in 2𝑛− 2𝑡

subinteractions. However, if 𝑛 is extremely massive

and 𝑡 is comparatively tiny, the numbers of

interactions to be examined and extra take a look at

cases to be generated ar terribly massive. For

convenience, we have a tendency to assume every

parameter features a worth, that doesn't go with any

fault (i.e., this worth doesn't belong to any token

fault interaction).This worth is denoted as safe worth.

The number of times that every interaction seems in

passed take a look at cases and unsuccessful take a

look at cases has to be recorded. For a unidirectional

interaction, that is, a worth of a parameter, the worth

𝑓/(𝑓 + 𝑝) is known as the fault quantitative relation

of the worth. We merely think about that the smaller

the fault quantitative relation of a parameter’s worth

is, the additional probably this worth would be the

safe worth of the parameter.

ALGORITHM: The FIL algorithm

Inputs: CA: test case set

(𝑇): test result

Output: canFIS: the minimal fault interaction set of CA.

Process:

(1) Set canFIS = Φ, AllSet = Φ

 //canFIS save Candidate Fault Interaction Set;

 //AllSet save elements of CA, each element has 2 properties 𝑝, 𝑓.

//phase I, Generate Candidate Fault Interaction Set

(2) for(eachtest cases 𝑇 in CA){

(3) if(𝑅(𝑇) == fail){

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1807

(4) for (each element 𝑖 in subSet(𝑇)){

 //subSet() is a key function, we will explain it later.

(5) if (𝑖 ∉ AllSet){

(6) AllSet = AllSet ∪ {𝑖}

}

(7) AllSet[𝑖].𝑓 + +

//𝑓 is the number of test cases which include interaction and triggered system fault;

}

(8) }else{

(9) for (each_ element 𝑖 in subSet(𝑇)){

(10) if (𝑖 ∉ AllSet){

(11) AllSet = AllSet ∪ {𝑖}

}

(12) AllSet[𝑖].𝑝 + +

//𝑝 is the number of test cases which include interaction but not trigger system fault;

}

}

(13) for(each_element 𝑖 in AllSet){

(14) if (𝑖.𝑝 == 0){

(15) canFIS = canFIS ∪ {𝑖}

}

}

//phase II, Generate the minimal fault interaction set

(16) while(there_are_ element 𝑖 not tested in canFIS){

(17) if (𝑅(addTF(𝑃1.IE)) == fail){

 //addTF() is another key function, we will implement it later.

(18) canFIS = canFIS − {𝐼 | 𝐼 ∉ canFIS, 𝑖 ⊆ 𝐼}

(19) }else{

(20) canFIS = canFIS − subSet(𝐼)

}

}

(21) return canFIS

First, if a value of a parameter (1 ≤ 𝑖 ≤ 𝑛) appears in

interaction 𝐼, the value of 𝑝𝑖 in additional test case 𝑇

is 𝑝𝑖 itself; otherwise it will be assigned by the value

that has the smallest safe value. If many values of 𝑝𝑖

have the same smallest safe value, then 𝑝𝑖 will be

assigned randomly among these values.

Second, to check 𝑇, if it does not belong to test suite

CA, then 𝑇 is used as an additional test case;

otherwise, 𝑇 will be regenerated. The regeneration

process is to modify a parameter’s value in 𝑇 by

assigning this parameter another value whose safe

value is the smallest or second smallest, thus making

sure 𝐼 is a sub interaction of 𝑇. Then we repeat this

process till 𝑇 does not belong to CA.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1808

Algorithm 2: A Fault algorithm

--

(1) public static int foo (int 𝑎, int 𝑏, int 𝑐, int 𝑑)

(2) {

(3) int 𝑟 = 1;

(4) 𝑏+ = 𝑎 + 𝑐;

(5) switch (𝑎)

(6) {

(7) case 0:

(8) if (𝑐 < 1‖𝑑 > 2)

(9)

(10) //should be: 𝑟+ = (𝑏 − 𝑑)/(𝑎+ 2);

(11) 𝑟 = (𝑏 − 𝑑)/(𝑎+ 2);

(12) else

(13) 𝑟 = 𝑏/(𝑐 + 2);

(14) break;

(15) case 1:

(16) 𝑟 = 𝑐 ∗ (𝑎 −𝑑);

(17) break;

(18) }

(19) return 𝑟;

(20) }

Table 2 Test Result of 2-Way Coverage

Test# a b c d Result

-

1 0 0 0 0 Fail

2 1 1 1 0 Pass

3 0 1 2 0 Pass

4 1 0 0 1 Pass

5 0 0 1 1 Pass

6 1 1 2 1 pass

7 0 1 0 2 Fail

8 1 0 1 2 Pass

9 0 0 2 2 Pass

10 0 1 0 3 Fail

11 1 0 1 3 Pass

12 1 0 2 3 Pass

Table 3. The canFIS of CA

Test# a b c d Result

-

1 0 0 0 0 Fail

2 1 1 1 0 Pass

3 0 1 2 0 Pass

4 1 0 0 1 Pass

5 0 0 1 1 Pass

6 1 1 2 1 pass

7 0 1 0 2 Fail

8 1 0 1 2 Pass

9 0 0 2 2 Pass

10 0 1 0 3 Fail

11 1 0 1 3 Pass

12 1 0 2 3 Pass

13 0 0 0 0 Fail

14 1 1 1 0 Pass

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1809

0

15 0 1 2 0 Pass

16 1 0 0 1 Pass

17 0 0 1 1 Pass

18 1 1 2 1 pass

19 0 1 0 2 Fail

20 1 0 1 2 Pass

21 0 0 2 2 Pass

22 0 1 0 3 Fail

23 1 0 1 3 Pass

Table 3 shows the results of first process, in which

the first column refers to the number of interactions

while the first row represents the parameter of each

interaction and the remaining rows represent the

respective value of the parameters. Each row in Table

3 indicates an interaction from row 2 on. For

example, interaction 1 {𝑎.0, 𝑏.0, 𝑐.0} is shown in row

2 (I # 1).The second process is to generate minimal

fault interaction set, as shown in Table 4. The second

column of Table 4describes the interactions

contained by canFIS in each step.The third column

in Table 4 shows the interactions under testing. The

fourth column shows the additional test cases for

under testing interactions. Columns 5 and 6 show the

outputs of additional test cases and the set consisting

of the elements deleted from canFIS, respectively.

Table 4. The step of computing canFIS.

Step # canFIS I T= addTF(i) R(T) Delete from canFIS

(1) {1, 2, . . . ,23} 1 (0, 0, 0, 1) Fail {8}

(2) {1, 2, 7, 9, 10, . . . , 23} 2 (0, 0, 1, 0) Pass {2, 6}

(3) {1, 3, 4, 5, 7, 9, 10, . . . , 23} 3 (0, 1, 0, 0) Fail 0

(4) {1, 3, 4, 5, 7, 9, 10, . . . , 23} 4 (1, 0, 0, 0) Pass {4, 7}

(5) {1, 3, 5, 9, 10, . . . , 23} 5 (0, 1, 0, 1) Fail {1, 3, 9, 10, 12, 17, 18}

(6) {5, 11, 13, 14, 15, 16, 19, 20, 21, 22, 23} 11 (1, 1, 0, 1) Pass {11}

(7) {5, 13, 14, 15, 16, 19, 20, 21, 22, 23} 13 (1, 1, 0, 2) Pass {13}

(8) {5, 14, 15, 16, 19, 20, 21, 22, 23} 14 (1, 1, 1, 2) Pass {14}

(9) {5, 15, 16, 19, 20, 21, 22, 23} 15 (1, 1, 0, 2) Pass {15}

(10) {5, 16, 19, 20, 21, 22, 23} 16 (0, 1, 1, 2) Pass {16}

(11) {5, 19, 20, 21, 22, 23} 19 (1, 1, 2, 3) Pass {19}

(12) {5, 20, 21, 22, 23} 20 (0, 1, 1, 3) Fail {23}

(13) {5, 20, 21, 22} 21 (1, 1, 2, 3) Pass {21}

(14) {5, 20, 22} 22 (1, 1, 0, 3) Pass {22}

(15) {5, 20} — — — —

(16) {{a.0, c.0}, {a.0,d.3}} — — — —

We can conclude from Table 4 that the whole

process takes 14 steps and each step generates an

additional test case. The minimal fault interaction set

{5, 20} is screened out at step (15) at last. Meanwhile

we can get a conclusion that the number of steps the

process takes depends on the order of interactions

being tested. For example, if, in step (13) test

interaction 22, the element to delete in canFIS is {21,

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1810

22},then the minimal fault interaction set could be

generated directly. The whole process only takes 13

steps and needs only 13 test cases. Therefore, an

optimized interaction test order could reduce the

generating of test cases. In this paper, we do not

carry on the discussion and simply consider the order

is random. The method presented by Ghandehari et

al. [13] give the result that contains 9 interactions in

the set; however, the minimal fault interaction set

contains 2 interactions. This shows that the method

comFIL is more precise than the method proposed

by Ghandehari et al.

IV. EXPERIMENT AND TESTING

Evaluation Criteria. We use fault quantitative

relation as our analysis criteria. In FIL algorithmic

rule, we'd like to record range |the amount|the

quantity} 𝑝 of every interaction that exists in passed

take a look at cases and therefore the number 𝑓 of

every interaction that exists in unsuccessful take a

look at cases. For a 1-way interaction, the worth of

𝑓/(𝑓 + 𝑝) is termed fault quantitative relation. The

smaller the worth is, the additional probable

worth|the worth} are going to be a secure value of

the parameter. Since the feature of those programs

isn't a priority during this paper, they're assumed to

be correct. Then the quality and fault versions are

compiled and run with action 𝑇 as input; if the

outputs of ordinary and fault versions ar totally

different, we have a tendency to believe the action

triggers the fault; that's, 𝑅(𝑇) = fail; otherwise, 𝑅(𝑇) =

pass.we have a tendency to use six C programs

(comdline,count, nametbl, ntree, series, and tokens

[12]) as take a look at samples and input parameter

model conferred by Z. Zhang and J. Zhang [12].

Table five shows the essential info of those

programs.The second column represents the amount

of lines while not comments in every program,while

column3 refers to their input models. for instance,

comdline (9; (21, 34, 41, 62, 151))means comdline has

nine parameters, within which four parameters have

three values, a pair of parameters have only one

worth, one parameter has a pair of values, one

parameter has four values, a pair of parameters have

half-dozen values, and one parameter has fifteen

values. Count (6; (2, 2, 3, 3, 3, 3)) may also be painted

as count (6; (22, 34))

Table 5: Test sample.

Program Number Input model

of lines

Comdline 42 Comdline (9;(21, 34, 41, 62,

 151))

Count 288 Count(6;(22, 34))

Nametbl 129 Nametbl (8; (24, 32, 52))

Ntree 307 Ntree(6; (22, 44))

Series 329 Series (4; (21, 42, 61))

Tokens 336 Tokens (4; (22, 32))

V. RESULT

Table 6 indicates the careful check results of the

experiment; the info is principally targeted on check

steps (additional check cases) and base. In Table 6,

column a pair of shows the quantity of check cases.

Column three represents the various fault versions of

every program. Column four shows the scale of every

canFIS. Column five refers to the quantity of check

cases required by every canFIS. Columns 6-11

represent range|the amount|the quantity} of x-way

marginal fault interactions and therefore the number

of x-way fault interactions to be hand-picked,

severally; x can be known by the column title. as an

example, the primary fault version of comdline is

shown in Table half dozen. It means its canFIS’s size

is 1663, and it desires 149 check cases. The numbers

of 1-5-way marginal fault interactions square

measure 1; zero; 0; 0; 0, severally, and therefore the

marginal fault interaction larger than five ways in

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1811

which is zero.The numbers of interactions being

tested for computing every canFIS square measure 1;

15; 20; 22; 27; sixty four, respectively.

The simulated experiment result bestowed by Figures

one and a couple of shows the quantity of further

check cases is decreasing whereas the program may

higher match the three assumptions of this paper.

moreover, with the increment of marginal fault

interactions’ count, the magnitude relation becomes

smaller; this implies the upper likelihood of

obtaining safe price for input parameters. However,

once the marginal fault interaction will increase to a

special price like nine in Figure 2(b), the magnitude

relation would rise; this can be as a result of once the

quantity of input parameters becomes large, too

several further check cases are going to be generated;

this may have an effect on the potency and lead the

magnitude relation to rise.

Table 6. Test result of standard program.

Program CA size ver canFIS radix canFIS steps 1 2 3 4 5 Over 5

 1 0 0 0 0 0

 1 1663 149 1 15 20 22 27 64

 0 0 50 28 0 0

Comdline 95 2 10734 2033 0 6 219 415 613 780

 25 29 87 24 824 0

 3 2392 284 1 25 29 87 24 82

 0 2 0 0 0 0

1 121 36 0 2 19 14 1 0

Count 12 0 4 0 0 0 0

 2 250 89 0 5 41 24 1 9 0

 0 0 2 0 0 -

1 23 12 0 1 6 5 0 -

 0 7 4 0 0 -

Nametbl 25 2 109 54 0 9 31 14 0 -

 0 0 3 0 0 -

 3 41 20 0 0 9 11 0 -

 0 1 1 0 - -

1 47 43 0 32 11 0 - -

NTree 16 0 3 0 0 - -

 2 66 48 0 32 16 0 - -

 0 0 2 0 - -

1 18 15 0 7 8 0 - -

Series 24 0 13 0 0 - -

 2 57 34 0 19 17 0 - -

 0 0 0 0 - -

1 23 13 0 9 3 0 - -

Tokens 3 0 0 0 0 - -

 2 23 10 0 6 4 0 - -

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1812

VI. CONCLUSION AND FUTURE WORK

6.1. Conclusion. During this paper, we have a

tendency to gift a replacement combinatorial testing

formula named Fault Interaction Location formula

that may sort the tokenish fault interaction set of

check cases. the most contributions of this paper area

unit listed as follows:

(1) Summarizing the fundamental plan of the

previous fault interaction location techniques, as well

as their blessings and downsides.

(2) Proposing a completely unique fault interaction

location technique named Fault Interaction Location

formula that has additional powerful functionalities

and performs additional exactly compared with

different fault location techniques.

Figure 1. Test result of Simulated Experiment 1. (a) Ratio of steps and radix. (b) Step and radix.

Figure 2. Test result of Simulated Experiment 2. (a) Ratio of steps and radix. (b) Step and radix

If we have a tendency to cannot get the safe worth of

every parameter before testing, the value in

generating an extra legal action for associate

interaction is extremely high. However, if there are

solely a couple of bugs in an exceedingly program,

the quantity of stripped-down fault interactions is

little and it's a lot of probable for a parameter to be in

its safe worth.. once we calculate the safe values of

every parameter with correct strategies, it's nearly

not possible that generated extra take a look at cases

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1813

don't satisfy Assumption three. Even for a legal

action generated for associate interaction

indiscriminately, its chance that it doesn't satisfy

Assumption three is quite low. therefore nearly each

testing technique in combinatorial testing may solely

work effectively once applied in program with

comparatively less faults the speculation and

experiments indicate that FIL is a lot of correct in

fault localization compared with different algorithms

in terms of combinatorial testing.

The future work can embody 3 aspects: uncountable

extra take a look at cases ought to be generated; but,

the order of the interactions being take a look ated

can influence the quantity of extra test cases

generated. therefore optimizing the order of

interactions being take a look ated to scale back the

quantity of extra test cases are going to be the target

of formula is to get the stripped-down fault

interaction set, whereas the way to use the stripped-

down fault interaction set to additional find bugs also

will be a big topic to check additional later.

Exploring simpler combinatorial testing technique in

step with totally different style of software package

(such as net service) is additionally worthy of

additional study.

VII. REFERENCES

[1]. J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R.

N. Kacker,―Introducing combinatorial testing

in a large organization,‖Computer, vol. 48, no.

4, pp. 64–72, 2015.

[2]. W.-J. Zhou, D.-P. Zhang, and B.-W. Xu,

―Locating error interactions based on partial

covering array,‖ Chinese Journal of Computers,

vol. 34, no. 6, pp. 1126–1136, 2011.

[3]. C. Nie and H. Leung, ―The minimal failure-

causing schema of combinatorial

sting,‖ACMTransactions

onSoftwareEngineering and Methodology, vol.

20, no. 4, article 15, 2011.

[4]. B. Garn and D. E. Simos, ―Eris: a tool for

combinatorial testing of the Linux system call

interface,‖ in Proceedings of the 7th

IEEEInternational Conference on Software

Testing, Verification and Validation

Workshops (ICSTW ’14), pp. 58–67, Cleveland,

Ohio,USA, April 2014.

[5]. S. K. Khalsa andY.Labiche, ―An orchestrated

survey of available algorithms and tools for

combinatorial testing,‖ in Proceedings of the

25th IEEE International Symposium on

Software ReliabilityEngineering (ISSRE ’14),

pp. 323–334, IEEE, Naples, Italy,November

2014.

[6]. A. Gupta and C.H. Scholz, ―A model of normal

fault interaction based on observations and

theory,‖ Journal of Structural Geology,vol. 22,

no. 7, pp. 865–879, 2000.

[7]. D. C. P. Peacock, ―Propagation, interaction and

linkage innormal fault systems,‖ Earth-Science

Reviews, vol. 58,no. 1-2, pp.121–142, 2002.

[8]. C. J. Colbourn and D. W. McClary, ―Locating

and detecting arrays for interaction faults,‖

Journal of Combinatorial Optimization,vol. 15,

no. 1, pp. 17–48, 2008.

[9]. C. Mart´ınez, L. Moura, D. Panario et al.,

―Algorithms to locate errors using covering

arrays,‖ in LATIN 2008:Theoretical

Informatics, pp. 504–519, Springer,

Berlin,Germany, 2008.

[10]. J. Piton-Gonc¸alves and S. M. Alu´ısio, ―An

architecture for multidimensional computer

adaptive test with educational purposes,‖ in

Proceedings of the 18th Brazilian symposium

onMultimedia and the web (WebMedia ’12),

pp. 17–24, ACM, S˜aoPaulo, Brazil, 2012.

[11]. A. Zeller and R.Hildebrandt, ―Simplifying and

isolating failureinducing input,‖ IEEE

Transactions on Software Engineering, vol.28,

no. 2, pp. 183–200, 2002.

[12]. Z. Zhang and J. Zhang, ―Characterizing failure-

causing parameter interactions by adaptive

testing,‖ in Proceedings of the20th

International Symposium on Software Testing

and Analysis(ISSTA ’11), pp. 331–341, ACM,

Toronto, Canada, July 2011.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Muzammil H Mohammed et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1804-1814

1814

[13]. L. Ghandehari, J. Chandrasekaran, Y. Lei, R.

Kacker, and D. Kuhn, ―Short paper: BEN: a

combinatorial testing-based fault localization

tool,‖ in Proceedings of the 4th

InternationalWorkshop on Combinatorial

Testing (in Junction with 8th

IEEEInternational Conference on Software

Testing, Verification andValidation), April

2015.

[14]. Wei Zheng, Xiaoxue Wu, Desheng Hu, and

Qihai Zhu College of Software & Micro-

Electronics, Northwestern Polytechnical

University, Xi’an 710072, China

[15]. L. S. Ghandehari, Y. Lei, D. Kung, R. N.

Kacker, and D. R. Kuhn,―Fault localization

based on failure-inducing combinations,‖

inProceedings of the 24th IEEE International

Symposium on SoftwareReliability Engineering

(ISSRE ’13), pp. 168–177, Pasadena,Calif, USA,

November 2013.

[16]. M. B. Cohen, M. B. Dwyer, and J. Shi,

―Interaction testing of highly-configurable

systems in the presence of constraints,‖

inProceedings of the International Symposium

on Software Testingand Analysis, pp. 129–139,

ACM, 2007.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

