
CSEIT1833700 | Received : 10 April 2018 | Accepted : 24 April 2018 | March-April-2018 [(3) 3 : 1696-1705]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

1696

A Detailed Phasewise Study on Software Metrics : A Systematic

Literature Review

Ausaf Ahmad1, Tamanna Siddiqui2, Najeeb Ahmad Khan3
1Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
2Department of Computer Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India

3 SRB International Private Limited, Noida, Uttar Pradesh, India

ABSTRACT

As we all aware that the measurement becomes an essential part of all engineering fashion and software

development lifecycle is no exception. Software metric applied to create quantitative/qualitative decisions

regarding development process and product as well as in risk assessment. The verities of software metrics have

been developed that have utilized by different project personnel at different phase of software development to

fulfill the objective in an effective way. In this paper, we discuss about software measurement and metrics along

with their standard role in the software development. A systematic phase wise studies on the metrics used in

different phase of software development lifecycle have been carried out.

Keywords : Software Metrics, Measurement, Software Development, Complexity, Lines of Codes, Systematic

Review.

I. INTRODUCTION

Since last two decades, human dependency on

software system has been increased exponentially as

peoples are working around direct or indirect

influence of electronic artifacts and software used in

different services for different intention. Software

quality and reliability modeling is extremely

important as the software is being utilized in diverse

areas of several applications. M.R. Lyu illustrates the

impact of software failure encountered throughout

the globe [1]. The consequences of failures may lead

to economical, time and effort losses. Therefore,

predicting the quality and reliability before the

product release is a serious challenge and it has

become an interesting research field of software

engineering.

The field of software metrics has evolved continues

mainly for two perspectives. First one for software

development personnel to be able to effectively

manage the development process under all defined

and possible constraints. For example, estimation of

resources and time required to develop the product

successfully. Other for the researchers, who always

concentrate on defining objective and establishing

metrics to estimate the software attributes to get a

better understanding about software engineering [2].

There is no standard metric to measure the all the

attributes as this field of software engineering is

changing continuously and new metrics are always

being proposed. Researchers are continuously

contributing to enhance their existing metrics to

accommodate the new measures and it is really a

challenging task [5].

One notable point is that a lot of research has been

done on software measurement and a number of

measuring techniques have been suggested and

condescend, a lot of computing tools have been

designed also, Which arises the possibility of losing

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

307

factual information, mislead and get confused. Due to

this cause, it becomes necessary to adhere certain

specific and well-defined techniques and methods for

investigating the existing literature. We studied

many literatures and find out that software

measurement to be among the youngest disciplines of

software engineering because presently, in this field

the introduction of new terminology, concepts and

techniques remain being defined [6]. Since there is

no method that measure all attributes.

Different metrics employed used in different states of

the software development practice to measure the

attributes that affect the software projects, product

and process.

In concern to above identified issues, this effort

carries out an organized literature review with a

predetermined search tactic to summarize and

systematize the contributions of the state-of-art

towards software measurement. The organization of

this document is as follows. Section 2 describes the

background Information of software metrics. Section

3 describes the methodology followed to conduct the

studies. Section 4 describes the objective of metrics.

Section 5 reports various metrics sets used in

different phase of development lifecycle. Section 6

draws conclusions about the studies carried out in

this paper.

II. RELATED WORK

Unterkalmsteiner [7] conducted a systematic

literature review study to examine a variety of

software metrics applied for the purpose of software

process improvement (SPI), evaluation and

assessment strategies. To conduct the systematic

review they select and analyze total 148 research

papers that were published from the year 1991 to

2008. The studies ware focus mainly on all the factors

which made affect the software development,

product and process like effort estimation, defect,

time, cost, product quality, process quality,

productivity, client satisfaction along with additional

success pointers. The summary of this literature

review demonstrates that 39% primary studies pay

attention on quality measure, 38% on estimate

approximation as well as 35% on productivity. The

classification of included papers is based on quality

characteristics like functionality, reliability,

reusability, portability, maintainability, and

efficiency. The measurements are mainly categories

into three categories, i.e. software product, project

and organization where product and project

categories provide great opportunities for

measurement research.

Kitchenham [8] made a literature review to analyze

and examine a variety of research studies published

on software measurement as well as they investigated

the possibility for an aggregation relationship

between them. They select 25 research papers

published from the year 2000 to 2005. The study

reported that there is requirement of assessment and

aggregation of finding reported in research. They also

suggested that there is also need to use the industrial

datasets to identify and address the issues

encountered relevant to software measurement in

the industry.

Gómez [6] conducted a SLR to summarize the state

of art in software measurement. They categorized the

identified metrics based on the variety of entities

measured, i.e. project, product and process. Moreover,

additionally they recognized whether the

determined attributes are internal or external. Their

report stated that approximately 79% selected

research papers focused on product metrics, 12% on

project as well as 9% on process metrics. When they

mapped these metrics with software development life

cycle founded that 48% primary studies focused on

initial, 36% and 16% on intermediate and final phase

of SDLC respectively. While design phase is most

likely (42%) measured phase of the SDLC and the

most likely measured attributes are the size and

complexity attributes. All these results ware answer

to the three research questions, i.e. what to measure?

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

308

How to measure and when to measure?. The

conclusion of the study stated that there is an

absolute need of empirically and theoretically,

validation of metrics for mapped these identified

metrics to software development phase and process.

III. METHODOLOGY USED

In this phase, we illustrate the design and the

execution of the review according to which this

review work has been done. We have performed

this SLR to summarize the state of the art in the field

of software metrics by following the standard

guidelines and recommendations for conducting SLR

in the field of software engineering [9][12][13].

According to these guidelines and recommendations,

the literature review has accomplished in three

phases: planning, conducting and reporting phase

presented in the fig. 1 also motivated from [14][11].

Figure1. Methodology Adapted to Conduct the

Literature Review

In the first stage, we identify the purpose and need of

a systematic literature review. The objective of

performing the systematic review is mentioned in

the introduction section. We identified and reviewed

the current systematic reviews on the topic in section

2. The review protocol was evolved to perform the

review and conduct the research in a systematic way

which free from possibility of biasness. Its concern

with research questions, searching approach which

helps us to find the more related studies. We select

many popular digital libraries like IEEExplore,

ScienceDirect, ACM Digital library, Google scholar

and many conference proceedings for searching the

papers and articles related the topic. The data

extracted from the selected primary studies concern

to the answer of the research question. Data

dissection and discussion relates how the data

concern with the topic and at the last, facts finding

and conclusion are disused.

IV. OBJECTIVE OF SOFTWARE METRICS

Software metric and measurement used as synonyms

in software development. Basically, software metric

is a way of measuring anything which directly

associated with software programs or its actual

development. From initial stage, measurement

becomes necessary for analyzing the feasibility and

find out the status of products, processes followed

and resources used in the development. The

organization of every single measurement activity

ought to be in the manner of instating its plainly

defined objectives. Modeler and Norman [15][16]

enlisted the objectives of software metrics as

A. Understanding

Metric assist to perceive what is happening

throughout the development and the maintenance

phase that can be used by the project personnel in

managing the development in better ways to deliver

high quality software products with reliability, safety

and security. Measurement should really be carried

out in sequence to obtain a model of process and

analyze important relationships between process

parameters that contributes towards developing an

excellent understanding together with enhanced

software projects.

B. Early Problem Identification

Software metric or measure enables to identify

problems in early phase or before it occurs and assists

to correct the same as a software management

strategy. In cases where issues are identified in the

Identification of Purpose of SLR

Planning

phase of LR

Conducting

phase of LR

Reporting

phase of LR

Constitute and Evaluation of Review Protocols

Searching and Selection of Primary Studies

Data Extraction from Selected Studies

Data Dissection and Discussion

Facts Finding and Conclusion

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

309

early phase of development, leads to resource saving

because resolving the problems occurred in later

phases of development are more economic, difficult

and wastage of resources.

C. Planning/Estimation

Preferable project planning and estimation is another

aspect of software metric. A well-planned strategy

helps in reaching the specified goal in an effective

way. The amount of rework or maintenance, mainly

perfective maintenance and adaptive maintenance is

a significant reason of failure of estimated budget. As

the cost of fixing the defects encountered increases

with increase in defects.

D. Quality

Software quality refers to delivery of defect free

product, meets stakeholders’ expectations, developed

in estimated budget and time and is maintainable.

There are various ways to think about the quality of

the software product. It’s a very complicated area and

depends on the number of defects as software quality

inversely proportional to the number of defects and

problems encounter during entire development and

maintenance phase.

E. Schedule

The volume of workload, the number of project

personnel as well as the way processes deployed are

pre-requisite factors that need more focus during

schedule preparation to monitor the projects on a

regular basis. To enhance the productivity, schedule

assists to manage what is happening during

development and maintenance [17] assures that if the

metrics are not implemented at the beginning of

development, may increase the possibility of errors

in afterwards stages.

V. STUDY ON SOFTWARE MERTICS

In this section, we discuss here a variety of software

metrics used in the various phases of software

development in a systemic way.

A. Requirements Phase Metrics

Requirements are brief summary of features and

functionalities of the targeted software system,

which describes the stakeholder needs. From the

client's point of view, the requirement could be clear

or sometime hidden, expected or unexpected. The

process of gathering software requirements from

clients, analyze them and prepare document is

referred as requirement engineering [18]. The

requirement engineering process includes a set of

activities during requirement gathering such as

Problem synthesis, Requirements Elicitation,

Requirements Analysis and Negotiation [19],

Requirements Specification, System modeling,

Requirements Verification and Validation,

Requirements Documentation and Requirements

Management [20]. As the name states, these metrics

are employed throughout inspection, elaboration

and development stage while the business/enterprise

model is to be established.

Table 1. List Of Metrics Used In The Requirement Phase Of Development

Metric Description

Specification

It is a complete description of requirements of a software system which to be

developed which demonstrates the functional and nonfunctional requirements

both, it may also incorporate a set of use cases that illustrate the user

interaction which the system must contain.

Completeness

It states that the requirements must be fully identified in one place without

missing any information. It means completeness of requirement measure the

aggregate number of functions presently specified

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

307

Correctness

It measures the requirements, which are exactly specified as the users expect

to get into a software system.

Concise

A requirement report is considered to be concise if requirements describe in

short length without affecting other features. This metric can be used to find

out the best SRS document between two describing the same.

Understandability

It defines the amount of requirements which are clearly understood by all

team members especially by the reviewers.

Verifiability

& ∑ () ∑ ()

Verification is the cost effective process of confirming that the built software

product completely addresses the requirements gathered which is checked by

individual or machine.

Internal Consistency

It determines the rate of unique features, which are deterministic provided

that SRS might be referred quite as a feature which correlates input states into

outputs.

Precise

Preciseness of requirements discus that requirements document should be

briefly summarizes the requirements and should not consist of an obscure and

unreadable detail.

Not Redundant

It measures the rate of unique function, which is not repeated in requirements.

Redundant information usually stored at different places, which arises

problems while update takes place.

Index: :Number of requirements having identical

interpretations, : Total number of requirements,

 : Number of unique functional requirements, :

Number of inputs entailed by the specification

document, : Number of states in the specification,

 : Total no of correct requirement, : Not valid

requirement, : Number of pages in SRS, :

Number of requirements understood by all team

members, : Cost obligatory to verify existence of

requirements, : Time obligatory to verify

existence of requirements, : Number of true

positive, :Number of False positive, : Total

number of functions specified.

Obviously, the optimal value of these metrics will be

one and for unambiguous requirement, we get its

value more closure to one. If its lower the value, a

requirement will be more ambiguous, which arises

the problems in the latter phases of the development.

Apart from these, many other requirement metrics

such as design independence, traceability, reusability

of SRS and requirements volatility that used in

requirements phase to gather quality requirement

for producing a better and quality product. Detecting

errors in the early phase of development are cost

effective process as removal of there one error in

later phases of developments arises many errors in

different modules of the software product.

Consequently, for uniquely identify the requirement,

it is necessary to constantly discuss and review the

requirement by all team staff and reviewers till they

all comprehend and identify the requirements

uniquely.

B. Design Phase Metrics

New software products surely be ten times more

better and desirable than the existing one for end

users to switch along with the failure rate associate

with new product introduction is about 35 to 40

percent. Therefore, which way a product is designed

is the main key to its success that explains twice

impressive as branding of the product [21]. Thus,

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

307

software design is considered as the procedure by

which a designer tends to create the specification of

software artifacts, employing a set of primitive

components and acceptable constraints to achieve

the goal [22]. It may refer to either "all the activities

associated on conceptualizing, framing,

implementing and finally modifying complex

systems" or "all the activities following requirements

specification and before programming" [23] and to

accomplish these task, some design metric or a set of

design metrics takes into consideration that are

enlisted below.

McCabe’s Cyclomatic Complexity

Thomas J. McCabe, Sr. Considered the source code

of a program as a graph, and try to find out the total

number of distinct linearly independent routes from

one end to another. This cyclomatic complexity

employed to signify the complexity of a program and

computed through a control flow graph of the

program that consists of sets of nodes and edges

where node corresponds to indivisible groups or

segments of command of a program and a directed

edge connects two different nodes as second

command tends to be executed subsequent to the

first command. When a program becomes larger in

complexity and length, the number of paths can't be

counted in a short span of time [24]. Consequently,

McCabe recommends reckoning the number of

underlying routes or all paths consisting of essential

path termed as “Cyclomatic Number” denoted by v(G)

and defined as Eq. (1)

 () (1)

Where (): Cyclomatic Complexity, : Number of

edges, : Number of nodes, : Number of connected

components or parts.

A programs created using only binary decision nodes

need to calculate the number of predicates and

increase it by one to get the complexity of the

program and formulated as Eq. (2)

 () (2)

Where v(G): Cyclomatic Complexity, P: Number of

predicates or binary nodes

It furthermore applied to individual functions,

modules and methods within a program and easy to

apply.

Information Flow Metric

Kafura and Henry proposed a metric called

Information flow that utilized to measure the

complexity of the software component [26]. The

techniques confirms to figuring out the number of

calls to a module, called as fan-in while figuring out

the number of calls from a module called fan-out. So

the complexity in information flow could be

measured by the Eq. (3)

 , - , - (3)

Where : represent the complexity of the module,

 : full length of the module.

Functions Points (FP) Analysis

Allan J. Albrecht was proposed function point

analysis in the mid-1970s that cover-up the

difficulties related to lines of code (LOC) to measure

the software size that also associated to predict the

effort. The objective of function point estimation is

briefly mentioned as

 Measures the software size by quantifying the

features required by and delivered to

stockholders based primarily on logical design.

 Measures the software development and its

maintenance task independently of technology

employed for implementation.

 Measures the software developments and

maintenance uninterruptedly across all projects

and business groups.

It concentrates on measuring the features of the

product accordance with following five components:

 User Inputs

 User Outputs

 User Inquiries

 Number of Files

 Number of External Interfaces

Function point analysis is widely accepted as a

standard metric to measure the software size since 40

years. After the classification of components as one

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

308

of the above, a ranking or a rating is assigned to the

projects as low, average or high. These rankings

depend on the number of files referenced and data

element types. After all the function point is

obtained by the relationship expressed in Eq. (4)

 (4)

Where : Unadjusted function point and

calculated as ∑

 , where the value of j

can be either 1 or 2 or 3, depending on the ranking of

project and is count for components i at rank j

that is fixed weight assign by the Albreht procedure

and calculated by using the weights as given in table

2:

Table 2. Software components and their

corresponding weight factors

Software Components Weight Factors

 Low Average High

No. of user inputs

No. of user output

No. of user inquiries

No.of files

No. of external

interfaces

3

4

3

7

5

4

5

4

10

7

6

7

6

15

10

CAF: Complexity adjustment factor and computed as

 ∑ , the value of CAF depends

on 14 general system characteristics that rate the

regular functionality of the projects.. Every single

characteristic incorporates the interlinked details

that guide to recognize the amount of influence of

the functionality. The degree of influence extent

varies on the scale of 0-5 from no influence to strong

influence.

In summary, the function point concept facilitates an

objective, comparative benchmark that aids in

assessment, planning, management and control over

software processing and production.

C. Testing Phase Metrics

Various types of testing carried out to produce a

quality and defect free software products and services.

Depending on types of t testing performed, software

testing metrics broadly categories in three major

categories.

 Manual Testing Metrics

 Performance Testing Metrics

 Automation Testing Metrics

Each category contains a set of different testing

metrics that are as presented in table 3.

Table 3. Taxonomy of testing phase metric

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

307

a) Manual Testing:

Test Case Productivity (TCP)

TCP metric provides the test case crafting

productivity consistent with the conclusive remark.

TCP is also known as Test Case Design Productivity

Metrics and calculated by the ratio of the total

Number of test prepared to effort spent on test case

preparation.

 [

 ()
]

or

 [

 ()
](4)

Example: Let efforts required for writing 191 steps is

9 hours. TCP=191/9=23.88

Test case productivity = 24 steps/hour

By comparing the test case productivity values with

the preceding release(s) and extract the more

appropriate results and recommendations from it.

The give below fig. 2 shows a test case productivity

pattern.

Table 4

Figure 2. Test Case Productivity Pattern

Test Execution Summary (TES

This metric classifies the test cases on the behalf of

project status together with a key fact explanation, if

exist, for different test cases. It provides the statical

viewpoint of the software release. Software tester

may gather the data to determine the number if the

test case implemented with under mention status:

 Success

 Fail with key points of failure

 Unable to test with cause such as time crunch,

setup issue, out of scope etc.

Figure 3. Test Execution Summary Pattern

It is possible to display the identical tendency for the

assortment of causes of miscellaneous unable to test

and fail cases also.

Defect Acceptance (DA)

DA metric use to find out the number of reasonable

defects identified by the testing staff during

execution. The values obtained by Defect Acceptance

can be compared with precedent launching to obtain

an improved picture about defects. Defect

Acceptance can be referred as the ratio of the

number of valid defects to total number of defects

found during testing of software.

 [

] ()

19 20

24

0

5

10

15

20

25

30

Jan-18 Feb-18 Mar-18

P
er

ce
n

ta
g

e

Release

TC Productivity

50
10

15

Test Execution Summary

Pass

Unable to Test

Fail

Test Case Name Raw Steps

ABC_1 32

ABC_2 35

ABC_3 41

ABC_4 37

ABC_5 46

Total Raw Steps 191

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1697

Figure 4. Defect Acceptance Pattern

Defect Rejection (DR)

Defect rejection metric used to obtain the number of

defects refused during the execution of the program.

This metrics offers the percentage of invalid defects

that the analyzing team has deployed as well as able

to control it whatever is essential. Defect rejection

metric referred as the ratio of the number of defects

rejected to the total number of defects encountered

during testing.

 [

] ()

The values obtained from defect rejection metric

could be correlated with prior issue for getting

excellent results.

Figure 5. Defect Rejection Pattern

Bad Fix Defect (BD)

The defects that contribute to rising new defects are

considered as bad fix defects. Such bugs in one

module can give rise to other new defects in other

modules.The effective software testing concentrates

on removing such defects to ensure quality. Such

metric establish the proficiency of the defect

settlement practice and defined as

 [

] ()

This metric provides the percentage of bad defect

settlement in the module which ought to be managed.

Figure 6. Bad Fix Defect Pattern

Test Execution Productivity (TEP)

Test Execution Productivity metric determines the

average test execution productivity whose deeper

examination can provide decisive results. This metric

utilized for performance evolution and time

estimation.

 [
 ()

 ()

]

()

Where T can be calculated as

 *(())

 (()) (())+

Where, Base Test Case is the number of Tc at least

once. T(1), T(0.66)and T(0.33) are the number of Tc

retested with 71% to 100%, 41% to 70%, 1% to 40%

of total Tc Steps respectively.

Example:

0

20

40

60

80

100

Jan-18 Feb-18 Mar-18

P
er

ce
n

ta
g

e

Release

Defect Acceptance

0
20
40
60
80

100

Jan-18 Feb-18 Mar-18

P
er

ce
n

ta
g

e

Release

Defect Rejection

0

2
1

0
1
2
3
4
5
6
7
8
9

10

Jan-18 Feb-18 Mar-18

P
er

ce
n

ta
g

e

Release

Bag Fix Defect

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1698

Table 5

From the above example:

Table 6

Base Test Case 5

T(1) 4

T(.66) 2

T(.33) 1

Total Efforts (In

Hour)

19.12

Te = 5 + ((1*0.33) + (2*0.66) + (4*1))) = 10.65

Therefore, Test Execution Productivity =

(10.65/19.12)*8 = 4.46 Execution/day

By comparing the productivity with preceding

release data can get a valuable conclusion and

recommendations.

Figure 7. Test Execution Productivity Pattern

Test Efficiency (TE)

Test efficiency measures the efficiency of testing

personnel working on identifying the faults. It

additionally demonstrates the faults skipped

through testing phase that moved to forward phase.

 [

] ()

Where

 Indicates the Number of valid defects

acknowledged while testing performed.

 Indicates the Number of valid defects

acknowledged by end users after post-testing.

Figure 8. Test Efficiency Pattern

Defect Severity Index (DSI)

DSI measures the quality of products during the test

as well as the release, depending on who take

decision for project release. Defect severity suggests

the amount of negative effect on the quality of

software.

2.1

3.8
4.46

0
1
2
3
4
5
6
7
8
9

10

Jan-18 Feb-18 Mar-18

E
x
ec

u
ti

o
n

(s
)/

d
a

y

Release

Test Execution Productivity

97 100 96

0

20

40

60

80

100

Jan-18 Feb-18 Mar-18

P
er

ce
n

ta
g

e

Release

Test Efficiency

Test

Case

Name

Ru

n

Bas

e

Eff

ort

(Hr

)

Re-

Ru

n1

Stat

us

Re-

Run

1

Effo

rt

(Hr)

Re-

Run

2

Stat

us

Re-

Run

2

Effo

rt

(Hr)

Re-

Run

3

Stat

us

Re-

Run

3

Effo

rt

(Hr)

ABC_

1

2.0 T(.6

6)

1.1 T(.6

6)

0.46 T(1) 2.0

ABC_

2

1.4 T(.3

3)

0.3 T(1) 2.0

ABC_

3

2.4 T(1) 1.3

ABC_

4

2.0 T(1) 2.0

ABC_

5

2.1

6

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1699

 [
∑()

] ()

b) Performance Testing Metrics

Performance Scripting Productivity (PSP)

PSP metric measures the scripting productivity with

regards to performance test script. The PSP metric

evolution process used in scripting productivity

incorporates logic encapsulate in the script that is

rarely applied and have tendency for a long time.

 [
∑

 ()
]

 ()

Where operation performed includes

 Number of hits on which data change

 Number of input parameters

 Number of correlation parameters

Example:

Table 7

Let the effort took in scripting = 9 hours.

ASP calculated =21/9= 2.1 Operations/hour

Figure 9. Performance Scripting Productivity Pattern

Performance Execution Summary (PES)

PES metric utilized for classification of performance

testing on the basis of number of tests organized and

carry out along with test status i.e. pass or fail. Some

performance testing are enlisted as

 Soak/Endurance test

 Peak Test

 Failover test

 Stress/Breakpoint Test

Figure 10. Performance Execution Pattern

Performance Execution Data - Client Side

Performance execution data-client side metric

provides a extensive knowledge about the client side

data for execution. Fewer data points of this

measurement are enlisted as

 Response time

 Clicks/second

 Running Users

 Throughput

 Total Transaction/second

 Error/second

Performance Execution Data - Server Side:

Performance execution data-server side metric

provides the extensive knowledge about the server

side data for execution. Fewer data points of this

measurement are enlisted as

 CPU utilization

 Memory Utilization

 Database connectivity per second

Performance Test Efficiency (PTE)

PTE metric used to measure the quality of

performance testing personnel with respect to

requirements meet that can be used as an input for

further extensive action of improvising, if essentially

required. Performance test efficiency metric use the

following formula for measurement.

1.6 1.8
2.1

0

1

2

3

4

Jan-18 Feb-18 Mar-18O
p

er
a

ti
o

n
(s

)/
H

o
u

r

Release

P.S. Productivity

0
1
2
3
4
5
6

2
1 1 1

3

1

N
o

. o
f

Te
st

(s
)

Execution Summary

Fail

Pass

Operation Performed Total

No. of Clicks 9

No. of Input Parameter 5

No. of Correlation Parameter 5

Total Operation Performed 21

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1700

 [

] ()

Where : Requirements meet during PT

 Requirements not meet after wrep up of PT

To analyze this, it is necessary to gather data point

during and wrap up of performance testing. Some

requirements of performance testing are enlisted as

 Transaction per second

 Average response time

 Server Stability

 Applications should be capable to handle

predefined maximum load.

Let during the Performance testing, above discussed

requirements found. Therefore, throughout the

performance Testing requirement met = 4. In

production, the average response time is higher than

estimated so requirements not cover after completion

of Testing = 1. Therefore, PT efficiency =

{4/(4+1)}*100 = 80%

Figure 11 Performance Test Efficiency Pattern

Performance Severity Index (PSI)

This metric used to measure the quality of products

accordance with performance benchmarks and the

information obtained from PSI metric can be used for

decision making to release the product to the next

phase. It reports the quality of products against

performance and measured by the formula

 [
∑()

] ()

If requirement not fulfilled, one can possibly allot

severity for the requirements with the intension that

decision can be taken regarding product release on

the behalf of performance.

Example:Assume, Average response time is essential

requirement that has not covered, then the tester

will be able to open defect with severity quite as

critical. Therefore, performance severity index =

(4*1/1) = 4

Figure 12. Performance Severity Index Pattern

c) Automation Testing Metrics

Automation Scripting Productivity (ASP)

In such testing, testing staff generates the test script

employing the automation tools to examine the

correctness of software. ASP metric employed for

assessment of progress of automation testing [Keele

(2007)].

 [
∑

 ()
]

 ()

Where, Operation performed includes

 Number of hits on which data are refreshed

 Number of input parameters

 Number of Checkpoint added

All above operations does incorporate logic

embedded into the script that often occasionally used.

Example:

Table 8

95 99 80

0

50

100

150

Jan-18 Feb-18 Mar-18

P
er

ce
n

ta
g

e

Release

Perf. Test Efficiency

0
0.4
0.8
1.2
1.6

2

0 0 0

1

N
o

.
o

f
D

ef
ec

t(
s)

Performance Serverity Index = 4

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1701

Assume effort took in scripting = 9 hours. Therefore,

ASP=26/9=2.9

Figure 13. Automation Scripting Productivity,

Pattern

Automation Test Execution Productivity (ATEP)

This metric measures the productivity of automated

test case execution.

 [

 ()

] ()

Where Test case executions can be estimated as

 *(())

 (()) (())+

Where, Base Test Case is the number of Tc at least

once. T(1), T(0.66)and T(0.33) are the number of Tc

retested with 71% to 100%, 41% to 70%, 1% to 40%

of total Test case Steps respectively. Evaluation

process involved in the ATEP is identical to manual

test execution productivity.

Automation Coverage (AC)

Test coverage indicates the volume of test carried out

by testing tools or the volume of manual process

converted into automation. Actually, this metric

employed to identify how much automation ensured

by deploying automation tools [Gulechha (2017)].

 [

] ()

Example: Consider, we have 100 Manual test cases

and the other has automated 70 test cases then in this

case Automation Coverage = 70%.

Cost Comparison

The test automation continues to be projected as a

strategy to reduce the testing expense [28].

Automation tools offer the services to run the

repetitive test case to boost the testing activity,

however this requires appropriate guidance and

training to run test by a specific testing tool. The cost

comparison can be done by separating the manual

and automated testing cost that is given below

 () ()

 () ()

 * ()

 + ()

Cost comparison metric is used for the analysis of

ROI (return on investment). In a case where script

reused, development cost is actually the script update

cost. This metric offer an excellent result with

regards to cost that contribution an imperative role

in software industries.

d) Common Testing Metrics

Almost, every software developing organization

specially gives extra effort on testing phase of

software life cycle to ensure the quality of product to

achieve users’ satisfaction. A number of testing

metrics have been developed in the last three decades;

some of them are disuses in the above section under

manual testing, performance testing and automation

testing. Otherthan these some other common testing

1.6
1.9

2.9

0

1

2

3

4

5

Jan-18 Feb-18 Mar-18

O
p

er
a

ti
o

n
(s

)/
H

o
u

r

Release

Auto Scripting Productivity

Operation Performed Total

No. of Clicks 11

No. of Input Parameter 5

No. of Checkpoint Added 10

Total Operation Performed 26

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1702

metrics also have been proposed that used for all

types of testing of software are discussed as

Effort Variance (EV) metric

Effort Variance measures the variance in the

estimated effort required in the testing phase of the

products. This metric tries to fill up the gap between

actual and estimate effort required. Determined by

the formula

 [

] ()

Figure 14. Effort Variance Pattern

Schedule Variance (SV) Metric

The schedule is a one of most important constraint of

the software life cycle. Schedule variance determines

whether project is running accordance with schedule

or not.

 [

] ()

Figure 15. Schedule Variance Pattern

Scope Change (SC) Metric

Scope change metric measures the stability scope of

testing and it may increase or decrease depending on

circumstances.

 [

] ()

Where,

Total Scope = Previous Scope + New Scope, if Scope

increases.

Total Scope = Previous Scope - New Scope, if Scope

decreases.

Figure 16. Scope Change Pattern

VI. CONCLUSION

Employing software metrics are an excellent exercise

that could deliver a wealth of benefit to a project.

However, it needs time, work as well as capital by

taking advantage of metrics in a frequent manner,

project personnel realize positive change and

improvement in the development process and in the

software product. Software metrics perform a

decisive contribution in managing the complexities

to reduce the manpower to develop, maintain the

software and improve the efficiency of testing along

with quality. In this paper, we have tried to describe

the various existing software metrics with suitable

example used in different stage of the application

development life-cycle. Our work contributes to the

field of software engineering and maintenance by

demonstrating that software metrics assist the

software developers and managers to effectively

manage the software development activities

economically and timely. Hopefully this work will

influence the personnel from both academia and

industries to understand, devise and design a new

90 95

0
20
40
60
80

100
120

Estimated Effort Actual Effort

H
o

u
r(

s)

Effort Variance

10

12

0

2

4

6

8

10

12

14

Estimated Days Actual Days

D
a

y
s

schedule Variance

4
6
8

10
12
14

Jan-18 Feb-18 Mar-18
T

o
ta

l
S

co
p

e(
s)

Release

Scope Change

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1703

software metric that could implement in distinct

phase of the application development life-cycle to

achieve the required goal effectively.

VII. REFERENCES

[1]. Lyu, M.R. (Revised 2005). Handbook of

Software Reliability Engineering. IEEE

Computer Society Press, California.

[2]. Fenton, N.; Bieman, J. (2014).Software Metrics

a Rigorous and Practical Approach.3rd edition,

CRC press.

[3]. Lima, P., Guerra, E., Meirelles, P., Kanashiro,

L., Silva, H., &Silveira, F. F. (2018). A Metrics

Suite for code annotation assessment. Journal

of Systems and Software, vol. 137,pp. 163-183.

[4]. Padhy, Neelamadhab, Satapathy, S., and Singh,

R.P., (2018).State-of-the-art object-oriented

metrics and its reusability: a decade review.In

Smart Computing and Informatics, pp. 431-441.

Springer

[5]. Scotto, M.; Sillitti, A., Succi, G., &Vernazza, T.

(2004, March). A relational approach to

software metrics. In Proceedings of the 2004

ACM symposium on Applied computing. pp.

1536-1540.

[6]. Gomez, O., Oktaba, H., Piattini, M., &García,

F. (2006, September). A systematic review

measurement in software engineering: State-of-

the-art in measures. In International

Conference on Software and Data Technologies

(pp. 165-176).Springer, Berlin, Heidelberg.

[7]. Unterkalmsteiner, M.; Gorschek, T.; Islam, A.

K. M. M.; Cheng, C.K.; Permadi, R. B.; Feldt, R.

(2012). A Systematic review measurement in

Evaluation and Measurement of Software

Process Improvement—A Systematic

Literature Review, IEEE Transactions on

Software, 38(2), 10.1109/TSE.2011.26.

[8]. Kitchenham, B. (2010). What's up with

software metrics?-A preliminary mapping

study. Journal of systems and software, 83(1),

37-51.

[9]. Brereton, P., Kitchenham, B. A., Budgen, D.,

Turner, M., & Khalil, M. (2007). Lessons from

applying the systematic literature review

process within the software engineering

domain. Journal of systems and software, 80(4),

571-583.

[10]. Siddiqui, T., & Ahmad, A., (2018) . “Data

Mining Tools and Techniques for Mining

Software Repositories: A Systematic Review”.

In: Aggarwal V., Bhatnagar V., Mishra D. (eds)

Big Data Analytics. Advances in Intelligent

Systems and Computing, vol 654. Pp. 717-726

Springer, Singapore.

[11]. Siddiqui, T., Ahmad , A., (2018) Complexity

Clarification through Code Metrics.

Proceedings of the 12th INDIACom, pp. 3746-

3749.

[12]. Keele, S. (2007).Guidelines for performing

systematic literature reviews in software

engineering. In Technical report, Ver. 2.3 EBSE

Technical Report. EBSE.sn.

[13]. Kitchenham, B., Brereton, O. P., Budgen, D.,

Turner, M., Bailey, J., & Linkman, S. (2009).

Systematic literature reviews in software

engineering-a systematic literature review.

Information and software technology, 51(1), 7-

15.

[14]. Unterkalmsteiner, M., Gorschek, T., Islam, A.

M., Cheng, C. K., Permadi, R. B., &Feldt, R.

(2012 b). Evaluation and measurement of

software process improvement—a systematic

literature review. IEEE Transactions on

Software Engineering, 38(2), 398-424.

[15]. Nuseibeh, B., & Easterbrook, S. (2000, May).

Requirements engineering: A roadmap. In

Proceedings of the Conference on the Future of

Software Engineering (pp. 35-46).

[16]. Davis, A. M. (1993). Software requirements:

objects, functions, and states. Prentice-Hall,

Inc.

[17]. Zave, P., & Jackson, M. (1997).Four dark

corners of requirements engineering.ACM

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1704

transactions on Software Engineering and

Methodology (TOSEM), 6(1), 1-30.

[18]. Bokhari, M. U., & Siddiqui, S. T. (2011, March).

Metrics for Requirements Engineering and

Automated Requirements Tools. In

Proceedings of the 5th National Conference.

[19]. Soren Petersen, Design Metrics -- Is It Possible

to Optimize Design for Innovation?, available

at http://www.huffingtonpost.in/entry/design-

metrics-is-it-poss_b_1411593.

[20]. Wikipedia of Requirements analysis

http://en.wikipedia.org/wiki/Requirements_ana

lysis.Retrived 2018.

[21]. Ralph, P., & Wand, Y. (2009).A proposal for a

formal definition of the design concept. Design

requirements engineering: A ten-year

perspective, 14, 103-136.

[22]. Freeman, P., & Hart, D. (2004).A science of

design for software-intensive systems.

Communications of the ACM, 47(8), 19-21.

[23]. Booch, G.; (2004). Object-Oriented Analysis

and Design with Applications (3rd Ed.). MA,

USA: Addison Wesley. ISBN 0-201-89551-X.

Retrieved 30 January 2015.

[24]. Kafura, D., & Reddy, G. R. (1987).The use of

software complexity metrics in software

maintenance. IEEE Transactions on Software

Engineering, (3), 335-343.

[25]. Omarsson, O.T. (2017). Assessment Methods

When Choosing a Software Architecture

Alternative Software Maintainability

Prediction. University of Gothenburg

Gothenburg, Sweden.

https://quandarypeak.com/2015/02/measuring-

software-maintainability/.

[26]. Gulechha, L.; Software Testing Metrics,

available at:

https://www.stickyminds.com/article/white-

paper-software-testing-metrics.

[27]. Ahamed S.S. (2009): Studying The Feasibility

and Importance of Software Testing: An

Analysis. International Journal of Engineering

Science and Technology, 1(3), pp.119-128.

[28]. Catal, C., &Diri, B. (2009). A systematic review

of software fault prediction studies. Expert

systems with applications, 36(4), 7346

[29]. Cyclomatic complexity available at

https://en.wikipedia.org/wiki/Cyclomatic_com

plexity.

[30]. Ebert, C., Dumke, R., Bundschuh, M.,

&Schmietendorf, A. (2005). Best Practices in

Software Measurement: How to use metrics to

improve project and process performance.

Springer Science & Business Media.

[31]. http://www.informit.com/articles/article.aspx?p

=30306&seqNum=3.

[32]. https://en.wikipedia.org/wiki/Halstead_comple

xity_measures retrived october,2016.

[33]. Jayanthi,B.; Kumari k. (2014): Brief study on

Software quality metrics and software

complexity metrics in Web application.

International Journal of Engineering Sciences

& Research Technology, 3(12) pp. 441-444.

[34]. Kafura, D., & Reddy, G. R. (1987).The use of

software complexity metrics in software

maintenance. IEEE Transactions on Software

Engineering, (3), 335-343.

[35]. Khan,A. A.; Mahmood, A.; Amralla, S.M.;

Mirza, T.H. (2016): Comparison of Software

Complexity Metrics. International Journal of

Computing and Network Technology, 4(1), pp.

19-26.

[36]. Kushwaha, D. S., &Misra, A. K. (2006).

Improved cognitive information complexity

measure: a metric that establishes program

comprehension effort. ACM SIGSOFT Software

Engineering Notes, 31(5), pp. 1-7.

[37]. Misra, S. (2006).A complexity measure based

on cognitive weights.International Journal of

Theoretical and Applied Computer Sciences,

1(1). Pp. 1-10.

[38]. Moore, J. W. (1998). Software engineering

standards. John Wiley & Sons, Inc..

[39]. Nirpal, P. B., & Kale, K. V. (2011).A brief

overview of software testing metrics.

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Ausaf Ahmad et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 1696-1705

1705

International Journal on Computer Science and

Engineering (IJCSE), 3(1), 204-211.

[40]. Shao, J., & Wang, Y. (2003). A new measure of

software complexity based on cognitive

weights. Canadian Journal of Electrical and

Computer Engineering, 28(2), 69-74.

[41]. Siddiqui, T., Wani, M. A., & Khan, N. A.

(2011).Efficiency Metrics. BVICAM's

International Journal of Information

Technology, 3(2), pp. 61-65.

[42]. Artemev, Vasilii, Vladimir Ivanov, Manuel

Mazzara, Alan Rogers, Alberto Sillitti,

Giancarlo Succi, and Eugene Zouev(2017). "An

architecture for non-invasive software

measurement." In International Andrei Ershov

Memorial Conference on Perspectives of

System Informatics, pp. 1-11. Springer, Cham,.

[43]. O'Regan, Gerard.(2017). "Software Metrics and

Problem-Solving." In Concise Guide to

Software Engineering, pp. 139-170. Springer,

[44]. Arar, O.F. and Ayan, K., (2016).Deriving

thresholds of software metrics to predict faults

on open source software: Replicated case

studies.Expert Systems with Applications, 61,

pp.106-121.

[45]. Toure, F., Badri, M., &Lamontagne, L.

(2018).Predicting different levels of the unit

testing effort of classes using source code

metrics: a multiple case study on open-source

software. Innovations in Systems and Software

Engineering, Vol. 14(1), pp. 15-46.

[46]. Gasparic, M., & Janes, A. (2016). What

recommendation systems for software

engineering recommend: A systematic

literature review. Journal of Systems and

Software, 113, 101-113.

