
 CSEIT1837668 | Received : 08 Sep 2018 | Accepted : 28 Sep 2018 | September-October - 2018 [3 (7) : 476-486]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 7 | ISSN : 2456-3307

476

Improved Context Aware PSO Task Scheduling in Cloud

Computing
1 B. SivaRama Krishna, 2 Dr. T. V. Rao

1Research Scholar, Department of Computer Science and Engineering, ANU, India
2 HoD, Department of Computer Science and Engineering, PVPSIT, India

ABSTRACT

Task scheduling problem is one of the most important steps in using cloud computing environment capabilities.

Different experiments show that although having an optimum solution is almost impossible but having a sub-

optimal solution using heuristic algorithms seems possible. Cloud services can compensate for the resource

constraints of mobile devices. However, challenges of utilizing the cloud service by mobile users arise from

inherent characteristics such as user mobility and device energy. In this paper, we propose a Context Aware

PSO Task Scheduling scheme to monitor the time level and communication quality as a part of a user context

information, and develop a resource allocation and scheduling scheme to adapt to the context changes by

exploiting the slack time. The objective is to reduce the execution cost of the jobs while meeting the jobs

deadlines set by the users

Keywords: Cloud Computing; Task Scheduling; Particle Swarm Optimization; Nearest Neighbours

I. INTRODUCTION

Resource Management comprises of various phases of

workload and resources from submission to execution

Resource management has 2 steps: i) Resource

provisioning ii) Resource scheduling. Resource

provisioning is the analysis where requirements by

consumers based on QoS and check proper resources

are given to workload where the resource scheduling

continues the work of resource provisioning

according to the resources selected by the consumer

the workload are mapped accordingly. Key player in

cloud is consumers and Provider, Providers allocates

the resources according to the resources demanded

by cloud consumer both players have different

agenda, providers want more as earn much profit as

possible with minimum investment many requests

handled on one resource will lead to performance

downgrade while the user wants minimum cost and

minimum execution time service quality is

maintained by rejecting the request which has

indefinite result. Scheduling becomes hectic and

information trading between is mostly not followed.

Challenges in resource scheduling include dispersion,

uncertainty which is not solved by RSA. Altering

cloud environment properties is not enough.

Consumers submits the workload is queued.

Resources are assigned to the workflow according to

the details provided. Workload is provided with

demanded resources by resource provisioned,

resource pool contains all the resources. If occurred

shortage of resources on basis of QoS requirements

the workload management system send a new request

by informing SLA with new QoS requirements.

Resources Scheduler is provided with workload just

after provisioning of resources is completed

successfully. In the next phase result are provided to

the Workload Management System. Request

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 477

provided by the cloud consumer on the basis of

request scheduling policy is picked by the policy

selector [2] .Cloud Environment also a scheduler that

executes diverse planning strategies dependent upon

the choice taken toward arrangement selector. In

view of the planning policy, the resources need aid

allocated of the cloud workloads.

1.2. Need of Resource Scheduling

A lot of factors like user needs, type of system etc

have to be considered while designing a scheduling

algorithm. Avoiding indefinite starvation i.e. a

process must not wait indefinitely during the process

service. Minimizing overhead as overhead causes

wastage of the resources and if overhead is

minimized, the overall performance of the system

improves a lot. Enforcing priorities i.e. if a system

assigns any priorities to the process, the algorithm

must process the process with highest priority first.

Achieving balance between response and utilization

so that all the resources of the system are busy.

Depending on the type of system, a user may expect

the following things from the scheduler

➢ Enhance the time and resource utilization

parameter with reference to workloads.

➢ The amount of Resources of should be minimum

for the workload to satisfy the Quality Level.

➢ To Minimize the Completion time for better

Resource Scheduling.

➢ Allocate Suitable Workload to the Virtual

Machines.

II. Related Work

2.1. Context Aware PSO (CA_PSO)

In CA_PSO, population is initialized by random selection from execution times of given tasks on available

resources. The basics of the CA_PSO are discussed in this section.

cost cost

cost

(1)

() :if ((1)) (())

(+1) :if ((1)) (())

(+1) :if ((1)) (()) ((1)) (())

() :if ((1)) (()) ((1))

and

and

+

+

+

+ = +

+ = +

ibest

i t i t i

i t i t i

i t i t i i i

i t i t i i

P t

X t f X t f X t

X t f X t f X t

X t f X t f X t f X t f X t

X t f X t f X t f X t fcost (())

 iX t

 (5)

1 2
(+1) {Max{ (1), (1),..., (1)}}= + + +

ibest best best bestG t P t P t P t

(6)

i

1
() where Makespan(X)= =t i i

i

f X T
T

 (7)

cost ()

()

1
() where Cost =Makecost()

Cost
=

i

i

i X i
X

f X X (8)

(1)+
ibestP t and (+1)

ibestG t for th i particle after (+1)t iterations is computed using {Eqn. 5 and 6}. CA_PSO

uses two fitness functions, which are respectively based on Makespan and Makecost. Fitness function tf

computes the maximum completion time taken by tasks (Makespan) and another fitness function cost f

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 478

computes the cost liability corresponding to a schedule or any particles current position (Makecost).If iX is a

matrix with dimensions m t then iX can be defined as in {Eqn.9}.

(

LEN
: Where MIPS is capacity of Resource and LEN is length of tasks in MIPS

MIPS

0 : Otherwise

th

p

l p

l

i

T th
R T

R

X l, p)

l p

 (9)

2.2. Improved Context Aware PSO (CA_PSO)

In an effort to improve the performance credentials of CA_PSO, a VMs capacity and heterogeneity oriented

variant of CA_PSO with Nearest Neighbor (NN) has been proposed.

2.3. Nearest Neighbor (NN)

A novel heuristic is proposed in this section which is based on the concept of execution time characteristics of

heterogeneous VMs. New task is assigned to a free VM only if next allocation reduces the collective variance of

execution time of all tasks allocated (including completed tasks) to this machine. Below table illustrates the

working of proposed Nearest Neighbor (NN) heuristic. The key concept is to ensure that the selection of next

task for scheduling reduces the variance by maximum value or increases the variance by minimum value.

Algorithm: Nearest_Neighbor ()M,T

M : Set of VMs available for computation and execution; Number of VMs arem .

T : Set of tasks for execution; Number of tasks aret .

Step1: Start

Step2: Compute Load Matrix ()L m t from M andT .

Step3: Compute mean execution times MEM(1)m for each machine using ()L m t .

Step4: Initialize Zeros()=S m,t // Zero Matrix

Step5: For =1 to dol t

• Identify the Machine id iM which is free and can be considered for next task.

• Identify the Tasks id jT which if allotted to iM results in minimum increase in variance

of execution times of completed and newly submitted task jT and name this task as

Nearest Neighbor Task.

• Set ()= ()S i, j L i, j

Step6: Print values of S as output schedule.

Step7: Stop

3.3. Nearest Neighbour Context Aware PSO (NNCA_PSO)

In CA_PSO, a modified Cost Aware variant of PSO is considered for generation of optimal schedule for given

set of tasks and machines. A Hybrid variant of CA_PSO has been proposed in this Section.CA_PSO assumed to

have two objective functions for optimizing time and cost. If global and local best values could not be improved

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 479

by using time based optimization then cost based optimization is applied. The sequence of application of

objective functions in NNCA_PSO has been maintained in the same way as proposed in CA_PSO. In

NNCA_PSO, the initial population and population after iterations is treated with NN heuristic resulting in

better selection of global and local best.

Algorithm: NNCA_PSO()M,T

M : Set of VMs available for computation and execution; Number of VMs arem .

T : Set of tasks for execution; Number of tasks aret .

Step1: Start

Step2:Obtain schedule(s) using Nearest_Neighbor ()M,T

Step3: Initialize Population using schedules obtained from Nearest_Neighbor ()M,T

Step4:Fix number of Iteration (niter)

Step5: Define two objective functions based on Makespan tf and Makecost costf .

Step6: Apply Objective Function on Particles and obtain Fitness Value of each particle.

Step7: Set (0)
ibestP for each particlei by using

cost cost

cost

(1)

() :if ((1)) (())

(+1) :if ((1)) (())

(+1) :if ((1)) (()) ((1)) (())

() :if ((1)) (()) ((1))

and

and

+

+

+

+ = +

+ = +

ibest

i t i t i

i t i t i

i t i t i i i

i t i t i i

P t

X t f X t f X t

X t f X t f X t

X t f X t f X t f X t f X t

X t f X t f X t f X t fcost (())

 iX t

 and

 Set (0)bestG =
1 2

(+1) {Max{ (1), (1),..., (1)}}= + + +
ibest best best bestG t P t P t P t

Step8: For 1 to niter do=i

Update location of each particle using

1 2(1) () rand() (() ()) rand() (() ())+ = + − + −
ii i i ibest bestV t V t w C P t X t C G t X t

(1) () (+1)+ = +i i iX t X t V t

Evaluate fitness values of each particle using

i

1
() where Makespan(X)= =t i i

i

f X T
T

cost ()

()

1
() where Cost =Makecost()

Cost
=

i

i

i X i
X

f X X

Update ()
ibestP t for each particle by using

cost cost

cost

(1)

() :if ((1)) (())

(+1) :if ((1)) (())

(+1) :if ((1)) (()) ((1)) (())

() :if ((1)) (()) ((1))

and

and

+

+

+

+ = +

+ = +

ibest

i t i t i

i t i t i

i t i t i i i

i t i t i i

P t

X t f X t f X t

X t f X t f X t

X t f X t f X t f X t f X t

X t f X t f X t f X t fcost (())

 iX t

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 480

Update ()bestG t for current iteration by using

1 2
(+1) {Max{ (1), (1),..., (1)}}= + + +

ibest best best bestG t P t P t P t

Step9: Print values of bestG and the corresponding particle.

Step10: Stop

III. Results and Analysis

Here this work analyzes various scenarios with different parameters in cloud computing system corresponding

to APSO algorithm as described above. In each scenario, we change one parameter and keep other parameters

constant. On the basis of behavior of the system, we analyze it’s performance. The virtual machine

configuration, task and host are initially taken as given below:

VM Parameters
Task (cloudlet)

Parameters
Host Parameters

long size = 10000; //image size

(MB)

int RAM = 512; //VM memory

(MB)

int MIPS = 1000;

long BW = 1000;

int pes_Number = 1; //number of

CPUs

long length = 1000;

long file Size = 300;

long output Size = 300;

int pes_Number = 1;

int RAM = 4096; //host memory (MB)

long storage = 1000000; //host storage

int BW = 10000;

CPUs/ Cores=Quad core and dual core

Datacenter: Contain 2–Host with One Quad Core and One Dual Core (Total P.E. = 6)

Virtual Machine (VM) =20

Cloudlet (Task) = 40(not divisible)

Scheduling: Space Shared and Time Shared.

VM Allocation Policy: this policy chooses a host for a VM with fewer processing elements (PEs) in use. This

allocation policy does not perform any optimization of the VM allocation.

CloudSim is a framework for modeling and simulation of cloud computing infrastructure and services. In

CloudSim scheduling perform at two levels. First it is implemented between Hosts and Virtual Machines (VM)

and then implemented between Virtual Machines and cloudlets. In Space-Shared scheduling a processing

element can be allotted to new virtual machine.While in Time-Shared scheduling, task can be shared to the

processing elements for execution.

Scenario–1: Virtual Machine Aware

In this scenario the parameters used are Datacenter= 2 and each Datacenter contain two hosts in which one

host is quad-core and other is dual-core. Number of tasks is 40, VM’s Allocation Policy is space shared and

changing the number of virtual machines (VM) metric of result is Execution Time (ET) value of tasks (in

milliseconds) taken by three different methods is shown in table-6.

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 481

Table 1: Virtual Machine Aware Methods

Algorithm
No.of Virtual Machines(VMs)

2 5 6 8 10 15 20

PSO 20.4 8.2 7.0 5.0 4.2 3.8 3.8

APSO 20.0 7.8 6.8 4.9 3.6 3.2 3.2

NNCA_PSO 20.1 7.8 6.8 4.7 3.5 3.2 3.1

Fig.1. Execution time as per no. of virtual machines

Table-1 and Fig-1 shows that, as the number of virtual machines increase the execution time decrease and it

become constant after fixed number of virtual machines. Each virtual machines use only one PE from each host

and only 16 VMs is created as per parameter used. Hence, when number of VMs becomes greater than 16,

there is no change in execution time. The APSO and NNCA_PSO approaches exhibit the better result as

compare to PSO.

Scenario-2: Virtual Machine with Number of PEs Aware

In this the number of VM’s kept constant (i.e. VMs=20) and rest data is as in scenario–1. Now changing the

number of PEs per VM, the resultant ET value of the tasks taken by three different methods is shown in Table–

2.processing elements (PEs)

Table 2: Virtual machine with number of PE’s aware

Algorithm
No.of Processing Elements (PEs)

1 2 3 4 5 6

PSO 4.4 4.6 6.6 6.6 N.E N.E

APSO 4.0 4.4 6.2 6.2 N.E N.E

NNCA_PSO 4.0 4.4 6.2 6.2 N.E N.E

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 482

 Fig.2. Execution time as per no. of P.E per host

Table-2 and Fig.2 shows that as we increase the number of PEs per VMs the execution time also increases and

after a fixed number of PEs the task is not executed. Since the task is dependant so the task will execute one by

one. The result obtained in APSO-1 and NNCA_PSO-2 exhibit the better as compare to PSO.

Scenario–3: Host Bandwidth Aware

In this scenario parameter used are #Datacenter= 2,#VM=20, #Task =4000, Space Shared/time Shared, changing

bandwidth (BW) of host by keeping the VM bandwidth constant the resultant ET value of the tasks taken by

three different methods is shown in Table 3.

 Table 3: Host bandwidth aware

Fig.3. Host bandwidth aware

Algorithm
Host Bandwidth (BW)

800 1000 2000 3000 4000 5000 10000

PSO NE 488.2 480.2 446.2 348.2 344.8 356.6

APSO NE 400.5 360.8 360.8 330.8 330.8 332.6

NNCA_PSO NE 380.5 366.8 360.6 350.8 350.8 334.2

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 483

Table 3 and Fig.3 shows that as we increase the bandwidth the execution time decrease and become constant

after some fixed amount of bandwidth (when its bandwidth match with computational frequency). The Task is

not executed when required bandwidth is not full–filled by data-center. APSO and NNCA_PSO exhibit the

better result as compare to PSO.

Scenario–4: VM’s Bandwidth Aware

In this scenario the parameters are #Datacenter=2,#VM=20, #Task=4000, Space Shared/Time Shared, changing

the bandwidth of VM by keeping the host bandwidth constant. The resultant ET value the tasks taken by three

different methods is shown in Table 4.

Table 4: VM’s bandwidth aware

Fig.4. Execution time as per VM bandwidth

Table 4 and Fig.4 shows that as we increase the bandwidth up to a fixed amount as per computational capability

of VM’s, number of VM’s and bandwidth supply by data-center, the Execution time decrease and finally

become constant after a fixed amount of bandwidth as shown above. Here APSO and NNCA_PSO exhibit the

same result compare to PSO.

Scenario–5: Data Center Aware

In this there is 4 data-centers, each data-center contains 2 hosts with quad core system, #task=400). In second

we considered 2 data-centers, each data-center contains 2 hosts with quad core, #task=400. In both cases VMs

Algorithm
VM’s Bandwidth (BW)

800 1000 2000 3000 5000 10000 12000

PSO 348.8 343.2 333.0 330.2 330.2 330.2 330.2

APSO 348.8 343.2 333.0 330.2 330.2 330.2 330.2

NNCA_PSO 348.8 343.2 333.0 330.2 330.2 330.2 330.2

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 484

are variable and metric of result is Execution Time (ET) of task taken by three different methods is given in

Table 5(a) and Table 5(b)

Table 5(a): Datacenter aware

Table 5(b) Datacenter Aware

Table–5(a) and Table–5(b) shows that as the VMs increase by increasing the number of data centres with the

same capabilities, the execution time decrease. The APSO and NNCA_PSO exhibit the same result as the PSO

in this scenario.

Figure 5. Execution time as per V.M bandwidth with 4 datacenter

Scenario–6: Host Storage Aware

In this there are two datacenters, each contains 2-hosts (onewith quad core and other with dual core), task=40,

hoststorage is variable and metric of result is Execution Time (ET) of the tasks by three different methods is

shown in Table–6.

Algorithm
Virtual Machines(VMs)

10 15 20 30 40 50 70

PSO 380.2 340.6 280.6 280.6 250.6 210.6 195.6

APSO 380.2 340.6 280.6 280.6 250.6 210.6 195.6

NNCA_PSO 380.2 340.6 280.6 280.6 250.6 210.6 195.6

Algorithm
Virtual Machines(VMs)

10 15 20 30 40 50 70

PSO 343.5 336.6 278.4 260.6 240.8 236.8 234.0

APSO 343.5 336.6 278.4 260.6 240.8 236.8 234.0

NNCA_PSO 343.5 336.6 278.4 260.6 240.8 236.8 234.0

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 485

Table 6. Host Storage Aware

Figure 6. Execution time as per storage capacity

The Fig.6. shows that as host storage size increase, the execution time decrease. A storage requirement of VMs

to store and communicate output of tasks increased. The APSO and NNCA_PSO exhibit the same result as the

PSO.

IV. CONCLUSION

The implementation results of APSO and

NNCA_PSO are presented in different tables

considering different parameters as shown above.

Since convergence rate of PSO is better than other

heuristic algorithm for task scheduling. The APSO

and NNCA_PSO gives better result than original

PSO by keeping inertia weight between 0.4and 0.9.

In some scenario PSO, APSO and NNCA_PSO

exhibit the same result because variable parameter

doesn’t enhance the searching capabilities. It is

clear from the implementation results of PSO,

APSO and NNCA_PSO that inertia weight (w)

plays an important role to find the best cost. APSO

and NNCA_PSO both keep the value of w between

0.4 and 0.9, and enhance the searching capabilities

for best cost. In implementation of PSO as a

scheduling algorithm, various parameters of cloud

setup like VMs, hosts, bandwidth, tasks, and

numbers of PEs etc. have been considered. The

implementation results of APSO on CloudSim

show that on average it is capable to find best cost

as compared to original PSO. Our results conclude

that on average the proposed method is better than

the existing method. In future to accept PSO as a

scheduling algorithm some other parameters like

acceleration coefficient and cognitive component

must be taken into account. Virtualization and

scheduling approach are the other parameters

which affect PSO based scheduling algorithm in

cloud computing.

Algorithm
Virtual Machines(VMs)

1K 10K 20K 30K 35K 40K 50K

PSO 125.8 120.8 111.6 106.8 99.4 94.0 87.8

APSO 125.8 120.8 111.6 106.8 99.4 94.0 87.8

NNCA_PSO 125.8 120.8 111.6 106.8 99.4 94.0 87.8

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 7, September-October-2018 | http:// ijsrcseit.com

B. SivaRama Krishna, Dr. T. V. Rao Int J S Res CSE & IT. 2018 September-October-2018; 3(7) : 476-486

 486

V. REFERENCES

[1]. Efficient_Telecommunications, “The Power of

Wireless Cloud,” Whitepaper, 2013.

[2]. K. Bratanis, D. Kourtesis, I. Paraskakis, and S.

Braun, “A Research Roadmap for Bringing

Continuous Quality Assurance and

Optimization to Cloud Service Brokers,” Proc.

eChallenges, 2016.

[3]. J. Wilkes and C. Reiss, “Details of the

ClusterData-2011-1 trace,” 2015. Online].

Available: https://code.google.com/p/

[4]. B. Snaith, M. Hardy, and a. Walker,

“Emergency ultrasound in the prehospital

setting: the impact of environment on

examination outcomes,” Emergency Medicine

Journal, vol. 28. pp. 1063–1065, 2014.

[5]. D. C. Marinescu, Cloud Computing: Theory and

Practice. 2016.

[6]. R. Buyya, J. Broberg, and A. Goscinski, Cloud

Computing: Principles and Paradigms. 2016.

[7]. A. U. R. Khan, M. Othman, S. A. Madani, and

S. U. Khan, “A survey of mobile cloud

computing application models,” IEEE Commun.

Surv. Tutorials, vol. 16, pp. 393–413, 2017.

[8]. M. Proebster, M. Kaschub, T. Werthmann, and

S. Valentin, “Context-Aware Resource

Allocation for Cellular Wireless Networks,”

EURASIP J. Wirel. Commun. Netw., vol. 2012,

no. 1, p. 216, 2017.

[9]. M. R. Rahimi, N. Venkatasubramanian, S.

Mehrotra, and A. V. Vasilakos, “MAPCloud:

Mobile applications on an elastic and scalable

2-tier cloud architecture,” in Proceedings -

2012 IEEE/ACM 5th International Conference

on Utility and Cloud Computing, UCC 2012,

2012, pp. 83–90.

[10]. M. R. Rahimi, N. Venkatasubramanian, and A.

V. Vasilakos, “MuSIC: Mobility-aware optimal

service allocation in mobile cloud computing,”

in IEEE International Conference on Cloud

Computing, CLOUD, 2017, pp. 75–82.

[11]. Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and

J. L. Hellerstein, “Dynamic service placement in

geographically distributed clouds,” IEEE J. Sel.

Areas Commun., vol. 31, pp. 762–772, 2013.

[12]. A. P. Miettinen, “Energy efficiency of mobile

clients in cloud computing,” Energy, p. 4, 2010.

[13]. S. Di, D. Kondo, and W. Cirne, “Host load

prediction in a Google compute cloud with a

Bayesian model,” in International Conference

for High Performance Computing, Networking,

Storage and Analysis, SC, 2013.

[14]. J. Heo, K. Terada, M. Toyama, S. Kurumatani,

and E. Y. Chen, “User demand prediction from

application usage pattern in virtual

smartphone,” in Proceedings - 2nd IEEE

International Conference on Cloud Computing

Technology and Science, CloudCom 2010,

2017, pp. 449–455.

[15]. P. Saripalli, G. V. R. Kiran, R. R. Shankar, H.

Narware, and N. Bindal, “Load prediction and

hot spot detection models for autonomic cloud

computing,” in Proceedings - 2011 4th IEEE

International Conference on Utility and Cloud

Computing, UCC 2011, 2011, pp. 397–402.

[16]. Y. Baryshnikov, E. Coffman, G. Pierre, D.

Rubenstein, M. Squillante, and T. Yimwadsana,

“Predictability of web-server traffic

congestion,” in Proceedings - WCW 2005: 10th

International Workshop on WebContent

Caching and Distribution, 2005, pp. 97–103.

[17]. M. Andreolini and S. Casolari, “Load prediction

models in web-based systems,” in 1st

International Conference on Performance

Evaluation Methodologies and Tools, 2006.

Volume%203,%20Issue%207,%20September-October-2018%20
http://www.ijsrcseit.com/

