

A Survey on Content Based Image Retrieval using Classification Technique

Mehta Priyanka Hemantkumar, Dr. Ashish Adholiya

Research Scholar, Pacific Academy of higher Education and Research University, Udaipur, Rajasthan, India
Assistant Professor of IT and Marketing, Faculty of Management, Pacific Academy of higher Education and Research
University, Udaipur, Rajasthan, India

ABSTRACT

From the last several years, the volume of digitized images has been rapidly increased. Day-to-day, huge volume of images is going to be initiated. These digital images are going to be stored in a database. This database is called image database. After the storage it is also necessary to search and retrieve these stored images proficiently. This has risen to the need of a well organized Image Retrieval system. This paper introduces image classification technique for Image Retrieval System.

Keywords: Content Based Image Retrieval, Feature Extraction, Classification technique

I. INTRODUCTION

The era of information technology has given the raise to the wide usage of images in all the major areas of human beings like education, crime prevention, hospitals, government, commerce, architecture, engineering, surveillance etc. These different areas use a huge amount of images. This huge amount of images is termed as image database. The image database is one of the system in which image data are stored. Various areas have different image databases for storing their relevant images.

The storage in the image database is no more feasible if the stored images cannot be retrieved for the future use. So an efficient Image Retrieval system is needed to achieve this task. Now-a-days Content Based Image Retrieval systems are used for browsing, searching and retrieving images efficiently. This retrieval is based on the visual features of an image such as color, texture and shape.

Majority of the CBIR systems work in the way: Load query image, extracts feature vector from the query image, extracts feature vector from each image available in the database and the set of these feature vectors is organized. Figure 1 represents the block diagram of a basic CBIR.

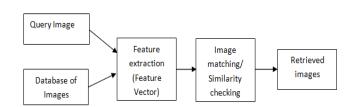


Figure 1 : Block Diagram of CBIR

1. Feature Extraction

Feature extraction is the most important task of Content Based Image Retrieval process. Here

different image attributes like color, texture, shape are discussed for feature extraction.

1.1 Color feature

Color is the widely used visual feature in Content Based Image Retrieval due to ease of use and computation speed. Each and every color is represented by combining the three features red (R), green (g) and blue (B). Color information can be extracted using different color descriptors like color histogram, color moments, color correlograms, MPEG-7 color descriptors. In digital images, color are represented in different color spaces like RGB, HSV, YIQ, CMY, YCbCr, CIElab etc.

1.2 Texture feature

Texture represents natural properties of the surfaces that describe visual patterns. Texture features are also widely used in CBIR applications. Texture has important information related to structural arrangement of clouds, bricks, leaves etc. Wavelet transformation, Gabor filter, Tamura features are some of the texture descriptors.

1.3 Shape feature

The shape feature of an object is also used in many of the Content Based Image Retrieval Systems. Shape representation techniques are characterized as either region-based (Statistical moments) or boundary-based (polygonal approximation, Fourier-based shape descriptors).

2. Image Classification Method

Image classification is the main domain where the deep neural networks perform the important task. Classification is a machine learning technique used to reduce semantic gap between the low-level image features and high level user perception. Image classification is a two step process consisting of training and testing phases [1]. In training phase the

samples of each class are trained and establish model description for each class. In testing phase the model is used to classify and index images that are not labeled. Table 1 [2] describes different classification techniques.

Classification	Benefits	Assumptions
techniques		and/or
•		limitations
Neural	· Can be used for	• Difficult to
network	classification or	understand the
	regression	structure of an
	• Able to	algorithm
	represent	· Too many
	Boolean	attributes can
	functions (AND,	result in
	OR, NOT)	overfitting
	• Tolerant of	• Optimal
	noisy inputs	network
	• Instances can	structure can
	be classified by	only be
	more than one	determined by
	output	experimentation
Support	• Models	 Training is
vector	nonlinear class	slow compared
machine	boundaries	to Bayes and
	 Overfitting is 	decision trees
	unlikely to occur	• Difficult to
	 Computational 	determine
	complexity	optimal
	reduced to a	parameters
	quadratic	when training
	optimization	data is not
	problem	linearly
	• Easy to control	separable
	the complexity	• Difficult to
	of decision rule	understand the
	and frequency of	structure of an
	error	algorithm
Fuzzy logic	• Different	• Prior
	stochastic	knowledge is

	relationships can	very important
	be identified to	to get good
	describe	results
	properties	• Precise
		solutions are
		not obtained if
		the direction of
		decision is not
		clear
Genetic	• Can be used in	 Computation
algorithm	feature	or development
	classification and	of the scoring
	feature selection	function is
	 Primarily used 	nontrivial
	in optimization	• Not the most
	• Always finds a	efficient
	"good" solution	method to find
	(not always the	some optima,
	best solution)	rather than
	• Can handle	global
	large, complex,	 Complications
	nondifferentiable	involved in the
	and multimodal	representation
	spaces	of
	• Efficient search	training/output
	method for a	data
	complex problem	
	space	
	• Good at	
	refining	
	irrelevant and	
	noisy features	
	selected for	
	classification	

Table 1: Different classification techniques

II. RELATED WORK

Sultan Aljahdali, Aasif Ansari has proposed method for feature based image retrieval process and it is

applied with Gabor filter texture feature extraction technique [3]. They have experimented this method with Support Vector Machine Supervised Classification technique and without using it. Their result shows that great improvement in result by using SVM classification technique. But they have considered only texture feature which will not give best result for all type of images [3].

D. Jeyabharathi and Dr.A. Suruliandi have compared various feature extraction technique with different classification technique [4]. They have explored PCA, LDA and ICA for feature extraction techniques. On the basis of that features SVM and nearest neighbour classifier are compared. Their experiment result is evaluated based on reorganization rate and F score. Based on result they have concluded that PCA with SVM gives accurate result than nearest neighbour technique [4].

Literature survey on various techniques to classify labelled and unlabelled images is available in [5].Like Svm, D-Em, RF, Active Learning, Transductive Learning techniques are explain. And they have given some recommendation for choosing fuzzy set theory or Rough set theory according to our application [5].

Apostolos Marakakis, Nikolaos Galatsanos, Aristidis Likas have proposed relevance feedback approach with SVM classification. They have used two feature selections method to train the database according to feedback given by user and for reducing the database dimensionality[6].

III. CONCLUSION

In this paper, we have compared different image classification techniques along with their benefits and limitations involved in each technique. This survey can further be helpful in developing a Content Based Image Retrieval System that will be helpful in reducing the search time and semantic gap.

IV. REFERENCES

- [1]. Keyuri M. Zinzuvadia, Prof. Bhavesh A. Tanawala, Prof. Keyur N.Brahmbhatt , " A Survey on Feature Based Image Retrieval Using Classification and Relevance Feedback Techniques", IJIRCCE- Vol. 3, Issue 1, January 2015
- [2]. https://www.sciencedirect.com/topics/comput er-science/image-classification
- [3]. T. Dharani , I. Laurence Aroquiaraj "A Survey on Content Based Image Retrieval",IEEE, 978-1-4673-5845-3/13.2013
- [4]. Sultan Aljahdali , Aasif Ansari , Nisar Hundewale "Classification of Image Database using SVM with Gabor Magnitude",IEEE, 978-1-4673-1520-3/12/,2012.
- [5]. T. Dharani, I. Laurence Aroquiaraj IEEE

 Member "Content Based Image Retrieval

 System using Feature Classification with

 Modified KNN Algorithm", arXiv

 preprint:130.4717,2013
- [6]. Hossein Nezamabadi-pour, Ehsanollah Kabir ,

 " Concept learning by fuzzy k-NN classification and relevance feedback for efficient image retrieval", Elsevier- 5948–5954,2009

Cite this article as:

Mehta Priyanka Hemantkumar, Dr. Ashish Adholiya, "A Survey on Content Based Image Retrieval using Classification Technique", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 3 Issue 8, pp. 447-450, November-December 2018.

Journal URL: http://ijsrcseit.com/CSEIT1838105