

Liver Cancer Detection

L. S. Rohith Anand^{*}, B. Shannmuka, R. Uday Chowdary, K. Satya Sai Krishna

CSE, Vasireddy Venkatadri Institute of Technology, Guntur, Andhra Pradesh, India

ABSTRACT

Machine learning techniques play an important role in building predictive models by learning from Electronic Health Records (EHR). Predictive models building from Electronic Health Records still remains as a challenge as the clinical healthcare data is complex in nature and analysing such data is a difficult task. This paper proposes prediction models built using random forest ensemble by using three different classifiers viz. J48, C4.5 and Naïve Bayes classifiers. The proposed random forest ensemble was used for classifying four stages of liver cancer. Using a feature selection method the reliable features are identified and this subset serves as input for the ensemble of classifiers. Further a majority voting mechanism is used to predict the class labels of the liver cancer data. Experiments were conducted by varying the number of decision trees generated using the J48, C4.5 and Naïve Bayes classifiers and compared with the classification made using decision stump and Adaboost algorithms.

Keywords : Ensemble, Feature Selection, C4.5, J48 and Random Forest

I. INTRODUCTION

In health care industry, patient's medical data size grows day to day. The process of applying computer based information system (CBIS), including new techniques, for discovering knowledge from data is called data mining. The process of machine learning is similar to that of data mining. Machine learning algorithms may be distinguished by either supervised or unsupervised learning methods. Supervised learning methods are widely used for predictive modelling. Predictive modelling is a branch of clinical and business intelligence branch which is used for health risk classification and also to predict the future health status of the individuals. Electronic health records (EHR) are used to store large scale information of patient conditions, treatments etc. The EHR information may be structured or unstructured. Using controlled vocabulary, electronic health records are maintained in structured data

format for documenting patient information than narrative text which is unstructured in nature. EHR helps to streamline the clinical workflow information. Ensemble learning is a well-known approach used in machine learning for prediction by combining various ensemble models [1]. Ensemble of classifiers is aggregations of multiple classifiers are J48, C4.5 and Naive Bayes etc. [2]. Ensembles aim for better performance than any of the base classifiers. The proposed work aims to improve the accuracy of healthcare data for prediction and classification, by building a hybrid predictive classifier model using ensemble of classifiers [3][4].

The remaining part of the paper described in the following section.

Section 2 describes related works on classification, feature selection, subset generation, pre- processing and boosting algorithms such as adaptive boosting for

electronic health records. Section 3 explains the overall architecture of proposed system. Section 4 reports the experimental results. Section 5 concludes the paper.

II. RELATED WORK

This section discusses the existing methods for preprocessing, feature extraction, boosting methods such as adaptive boosting. Aydin et. al. (2009) investigated factors the various involved on ensemble construction using a wide variety of learning algorithms, data sets and evaluation criteria [5]. They have provided the idea of subset selection to the level of discriminating whether the discrimination is applicable or not at the level of classifier.Ping Li et. al. (2013) supervisedmulti-label surveyed about pairwise classification variable and proposed

constraint projection for mutli-label ensemble. They have adopted boosting methods to construct a multilabel ensemble to increase the generalization ability [6].

Jia Zhua et. al. (2015) employed multiple classifier systems (MCS) to improve the accuracy of disease detection for Type-2 Diabetes Mellitus. Multi classifier system performs worse when design is not proper [7]. They have proposed a dynamic weighted voting scheme for multiple classifier decision combination. Yan Li et. al. (2015) stated data mining framework for distributed healthcare information based on privacy preserving constraints [8]. Neesha Jothi et. al. (2015) surveyed the data mining techniques and has classified the articles have suggested data mining plays important role in medical diagnosing for predicting diseases [9].

Table 1.	Comparative	analysis of	different	ensembles	of classifiers
----------	-------------	-------------	-----------	-----------	----------------

Author	Methods Used	Data Sets Used	Number of	Performance Metrics
			Iterations	
Nikunj C.	K nearest neighbor, Learning	Datasets from	110	Average, Geometric
Oza	vector quantization, Multi-layer	UCI repository		mean
et.al.method	perceptron's, Radial basis			
(2008)[10]	functions, Support			
	vector machines			
Yong Seog	Naive Bayes, Support vector	German credit	120	AUC, Accuracy,
Kim	machines	data and COII		False positive rate,
et.al.method	,Artificial neural networks,	2000 competition		Hit rate gain
(2009)[11]	Pruned tree classifier	data		
Hesam Sagha	Quadrant discriminant analysis	2 real datasets	45	Entropy, Mutual
et.al.method		containing data		Information
(2013)[12]		from body		
		mounted inertial		
		sensors		
Ping Li	Bagging, Boosting, Random	12 datasets	20	Hamming loss,
et.al.method	Forest, Random subspace,	including test		Ranking loss,
(2013) [6]	Rotation forest	categorization,		One error,
		image		Coverage, Average

		classification and		Precision, F1-	
		bioinformatics		metrics, Recall	
Ritaban	Binary tree, Linear	24 Holstein-	20	AUC, Accuracy	
Dutta	discriminant analysis classifier,	Friesian cows			
et.al.method	Naïve Bayes Classifier, K-	from Tasmanian			
(2015) [13]	nearest	Institute of			
	neighbor, Adaptive Neuro	Agriculture			
	Fuzzy Inference classifier	Dairy Research			
		Facility			
Yang Zhang	SVM classifier, BPNN classifier	Benchmark	11	Average regression	
et.al.method	al.method		datasets from		
(2015)[14]		UCI repository			
Bing Gong	Artificial neural network,	Datasets from	30	F measure, G mean	
et.al.method	Support vector machines,	UCI repository			
(2016)[15]	CART				
Yan Li	Adaboost algorithm	9948 real world	20	F-measure,	
et.al.method		EHRs of diabetes		Sensitivity,	
(2016)[8]		patients		Precision	
Cátia M.	Apriori decision, Aposteriori	Benchmark	12	AUC,	
Salgado	decision	datasets from		Accuracy,	
et.al.method		UCI collection,		Sensitivity,	
(2016)[16]		MIMIC II		Specificity	
		datasets			

Based on the literature survey carried out a comparative analysis of the ensemble of classification methods, the data sets used for experiments by different researchers, the number of iterations for which the experiments were conducted and the metrics used for measuring the classification accuracy are tabulated in the table given below.

From the above table the conclusion drawn is an ensemble of C4.5, J48 and Naïve Bayes classifier with majority voting scheme was not studied and hence this work focusses on building a predictive model based on building a random forest using these three classifiers. The proposed system has been compared with the existing decision stump and Adaboost algorithms. The next section discusses about the proposed system and how limitations in existing system is resolved.

III. PROPOSED WORK

The proposed architecture is shown in Figure 1. The Electronic health records contain features like patient id, status, age, sex, hepato, ascites, edema, billi, cholestrol, albumin etc. The data considered have to be clinically transformed i.e. to make it suitable for further processing. The clinical transformation step is also identified as preprocessing step.

The unprocessed has null values, irrelevant values and noisy values. These data errors would lead to misclassification and hence need to be clinically transformed. The missing data in the considered dataset is imputed with values computed using mode function.

After pre-processing of data, for classifying instances under Random forest, three subsets from the datasets are generated. The subset will be generated considering three features like platelet count, alkaline phosphate and cholesterol values.

The random forests are built using three classification algorithms namely C4.5, J48 and Naïve Bayes. There are many voting mechanisms followed for ensemble of classifiers, here we are using majority vote method to perform voting with different classifiers. Here the output will be the final outcome of the majority of classifiers

Figure 1 shows the architecture of proposed system.

Figure 1. Architecture of Proposed System

The proposed system with its role and advantages is discussed. The experimental result analysis of the proposed work has been discussed in the next section.

IV. RESULTS AND DISCUSSION

Experiment Results

The proposed system is implemented using Java and Weka tool. The liver cancer dataset having 500 instances and breast cancer dataset are used for the experiments. The ensemble of classifiers is used for classifying these datasets on which voting is performed.

Pre-processing

In this module, pre-processing of data is done. The dataset which we have contains null values, irrelevant values and noisy values. As missing values in the dataset lead to misprediction of the final result, the dataset is pre-processed by filling missed values on basis of mode function. The dataset without pre-processing which contains irrelevant values is shown below in figure 2.

sex	ascites	hepato	spiders	edema	bili	chol	albumin	copper	alk.phos	ast	trig	platelet	protime	stage	
f	1	•	•		14.5	261	2.6	156	1718	137.95	172	190	12.2	Stage4	
f	0	1	1	1 0	1.1	302	4.14	54	7394.8	113.52	88	221	10.6	Stage3	
m	0	0) (0.5	1.4	176	3.48	210	516	96.1	55	151	12	Stage4	
f	0	1	1	1 0.5	1.8	244	2.54	64	6121.8	60.63	92	183	10.3	Stage4	
f	0	1		1 0	3.4	279	3.53	143	671	113.15	72	136	10.9	Stage3	
f	0	1		0 0	0.8	248	3.98	50	944	93	63		11	Stage3	
f	0	1		0 0	1	322	4.09	52	824	60.45	213	204	9.7	Stage3	
f	0	0	1	0 0	0.3	280	4	52	4651.2	28.38	189	373	11	Stage3	
f	0	0	1 1	1 0	3.2	562	3.08	79	2276	144.15	88	251	11	Stage2	
f	1	0	1	1 1	12.6	200	2.74	140	918	147.25	143	302	11.5	Stage4	
f	0	1	1 3	1 0	1.4	259	4.16	45	1104	79.05	75	258	12	Stage4	
f	0	0		1 0	3.6	236	3.52	94	591	82.15	95	71	13.6	Stage4	
f	0	0		0 0	0.7	281	3.85	40	1181	88.35	130	244	10.6	Stage3	
m	1	1		0 1	0.8	0	2.27	43	728	71	0	156	11	Stage4	
f	0	0	1	0 0	0.8	231	3.87	173	9009.8	127.71	96	295	11	Stage3	
f	0	0	1	0 0	0.7	204	3.66	28	685	72.85	58	198	10.8	Stage3	
f	0	1		0 0	2.7	274	3.15	159	1533	117.8	128	224	10.5	Stage4	
f	0	1		1 1	11.4	178	2.8	588	961	280.55	200	283	12.4	Stage4	
f	0	1		0.5	0.7	235	3.56	39	1881	93	123	205	11	Stage3	
f	0	1		0 0	5.1	374	3.51	140	1919	122.45	135	322	13	Stage4	
m	0	1		1 0	0.6	252	3.83	41	843	65.1	83	336	11.4	Stage4	
f	0	0	6 - B	1 0	3.4	271	3.63	464	1376	120.9	55	173	11.6	Stage4	
f	1	1		1 1	17.4	395	2.94	558	6064.8	227.04	191	214	11.7	Stage4	
m	0	1		0 0	2.1	456	4	124	5719	221.88	230	70	9.9	Stage2	

Figure 2. Dataset before preprocessing

The dataset is preprocessed to fill missing and irrelevant values as shown in figure 3

	200	(patri	Kitta .	-16	- 362	2mit	100
	3.0	1.		4.0	80	#14	19
	1.000	- K.	9.2	144	178	0.4	24
			1.4	+#	17	- 2.45	**
	1.1.1			. 49	1.0	(8.14	100
Botor electers				7.8	281	8.81	28
	100			- F	20	8/7	10
	1. M	*		wek.	100		-
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- F.		82		8.9	18
	1 (1 1 1)	1	- E -	12.8	28	23	18
salvet providure		- 1.	. 6	28	5.8	8.2	16
	1.00	1.		- 14	58	3.6	D1
				47	20	2.0	10
200210-0211000000	1.30		1	49		- 57	10
24 Eastern Frank Apartition	1.00			8.8	58	- 8.0"	1.3
	1.1			87	324	2.6	25
				87	51	81	1.10
		8.	- B	12.4	173	82	348
Kaiw Jepon Chandlenine, Algorithm		1	1.8	87	10		18
	1.03			112	2.8	3.2	16
				98	510	2.0	N
and the state of t	1.1	1		11	2.9	2.0	161
bel enter the effect	1	- E	5	17.4		2.04	216
				14	10		10
				87	240		-
Tries		×.		82	125	24	
and the second se			4.9	51.8	179		221
			1	12			24
					10		28
convertion of others, coulders				2.6	36	2.8	

Figure 3. Dataset after preprocessing

Feature selection

Feature selection method used for model construction by choosing a subset of relevant predictors. It also called as variable selection or attribute selection [17].

Data Mining for Hea	lthcare						
	- 10 m	of page 1 114					-
	915				2		
Barrow State	1.0	Ex DESCRIPTION.	2	100			1.1
Lishorsend	101	An INCOMENT	÷				
	146	10.00134048		0		6.0	1.00
	841	ad on the set	<u>.</u>		- 2 -		1.1
	14	an on-balant	2		- Q		11
deature selection	216	\$1000\$1448				8.8	- 54
Contraction of the local distance of the loc	8.17	Disconchesing	6				1
	340	-					- 62
	90	-0.00031229	0	0	0		1
iset prestution	504	10.00003444	6	6			
		-					
	540	et obuilding	0				
1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m	10	an constant					
ten Feret Agorithm	10	with the second second	÷		- C		1.0
	147	it: constants	÷.				- 19
	and a set	An owner the	2	120			1.2
		AL.	÷.				- 52
on touz Agoltin	116	all constrained	20			- 11	- 2
			2	1.0	- ÷		- 82
		interest the	24	1.2			- 27
on Caulfration Aborthan		**	2	12.1	- 2		- 12
	100	et mubelies	4		- G		
	-	41,0001(7)4	0				
	*10	00.000.000mm					1
120	-1	withoutseland	6		÷.		
Failed	812	10.00040-044	0				
	-12	TO MARKING					
	The Tak	inather of Linese	art parties	et in the hotels	£199		
between different classifiers			-				
					_		_
			_				
ampartices for welding and proprioted							
the second se							

Subset Generation

For classifying instances under Random forest, generate three subsets from the datasets. Subset will be generated considering some features as first, middle and last stages as shown in figure 5.

Proposesing	ani eli The Tel	#2.001.94309 0 #2.98901354 0	0			
Preprocessing	506 601 11.5 The Tel	#2.00136392 0 #3.98901334 0	0			
Preposessiag	806 801 913 The Tele	#2.00136398 0 #2.98901354 0	0	0		
Prepricendag	01 13 The Tele	63.98901354 0			0	1.8
Preparessing	413 The Tell		0	0	٥	42
	The Tab	20.000E544E 0	0	0	0	0.9
	Middle le	d number of Emergency p rel of stage +	exer Statutog sta	तुत्त of #D (real)	is the hospital st	
	78	N1.90080273 0	1	- 1	0	1.5
whether .	58	10.310103000 1	1	1	0.8	17.1
Carctana .	The Told Hash law	ù maniber of Emergency p 4 of etage 4	cient/Mildle rtage	en(eth level) in	the hospital S	
	10	70.33908049 1	0		1	12.4
And and a second se	18	53.99012460 G	1	1.1	1	11.0
asset Temezene	20	39.953e363e 0		0		8.1
	11	44.1899111 0	1	12	0	0.6
	22	34.57425598 0	0		0	2.4
n Farest Algorithm	15	3526714079 1	1		1	17.8
	39	6538218118 0	1	0	0	67
	90	o thelefabler	0	0	0	1.3
	*1	55.694T2H04 0	1	1	0	2.1
in feed Apartin	82	60.7063655 1	0	0	0	1.2
	71	90.24508518 G	1	0	0	12
	30	#7.4153M000 0	1	0	0	1.8
Could adve Marchine	10	63,26501819 0	1	1	0	15.5
a canacana Agenta	91	o seitstakte	1	1	0,5	
	117	49.63638975 0	8	- 11	0	6.3
	138	45.33696831T 0	1		0.3	0.6
	178	70.00%10#TE 0	0	0		0.6
Toting	191	1 42879261628	1	1	0	25.5
	DRI .	30.19002+16 0	1	0	0	0.9
	198	36112013ME 0	.0	0		10.6
A street different day of the	258	eranssauer o	1	3	0	0.9
erwen azurer cumzer	178	96.78904993 0	1	1	0	11
				2		
for existing and proposed						

Figure 5. Results achieved after implementing subset generation

Performance Evaluation

This section evaluates the performance of J48 Random forest classifier, C4.5 Random Forest classifier and Naïve Bayes classifier using Accuracy, True positive, False positive, Precision, Recall and Fmeasure. Figure 6 shows the performance of J48 Random Forest classifier for prediction different stages of liver cancer. Figure 7 show the performance of C4.5 Random forest classifier for prediction different stages of liver cancer and Figure 8 shows the performance of Naïve Bayes classifier for prediction different stages of liver cancer.

Figure 7. Comparison of C4.5 Random forest classifier at different stages

Table 2	. Accuracy	of Existing	and	Proposed	system
based o	n different t	hreshold val	ues		

Syste	Weight	Weigh	Weight	Weight
m	ed	ted ed		ed
	Thresh	Thresh	Thresh	Thresh
	old	old	old	old
	value	value	value	value
	100 in	200 in	500 in	1000 in
	%	%	%	%
Existi				
ng	46	48	46	44
Propo				
sed	51	53	50	48

Figure 8. Comparison of Naïve Bayes classifier at different stages

Comparison of Existing and Proposed System

The comparative analysis of classification accuracy for Liver and Breast cancer dataset shown in figure 9 and also existing and proposed system based on different threshold values shown in Table 2 and figure 10.

Classification Accuracy

Existing Proposed

In this section, we had a brief discussion about implementation and experimental results of Clinical feature transformation, Feature selection, Subset generation, J48 classifier, C4.5 classifier, Naive bayes classifier and Majority voting.

V. CONCLUSION

The prediction model is built by series of steps such as clinical feature transformation, feature selection, ensemble of classifiers and Majority voting which aimed to improve rate of correct predictions. The prediction accuracy is improved by an ensemble of classifiers and when majority voting mechanism was applied on them. The proposed system here achieve an accuracy of 40% for C4.5 Random forest classifier, 43% for J48 Random forest classifier, 38% for Naïve bays classifier when tested for Liver cancer dataset which is more than existing system. The accuracy of 45% for C4.5 Random forest classifier, 52% for J48 Random forest classifier and 47% for Naïve Bayes classifier was achieved when tested for Breast cancer dataset which is more than existing system which has an accuracy of 46%. The number of trees generated was varied and the prediction accuracy of the proposed work was studied.

VI. REFERENCES

- Dietterich TG.(2000), Ensemble methods in machine learning. In: Proceedings of Multiple Classifier System, vol. 1857, Springer (2000), pp. 1–15.
- [2] Zhi-Hua Zhou, Ensemble Methods: Foundations and Algorithms, Machine Learning & Pattern Recognition Series, 2012.
- [3] Yongjun Piao, Minghao Piao, Keun Ho Ryu, Multiclass cancer classification using a feature subset- based ensemble from microRNA expression profiles, Computers in Biology and Medicine 80 (2017) 39–44.
- [4] ManjeevanSeera, Chee Peng Lim, A hybrid intelligent system for medical data classification, Expert Systems with Applications 41 (2014) 2239–2249.
- [5] Aydın Ulas, Murat Semerci, Olcay Taner Yıldız, Ethem Alpaydın, Incremental

construction of classifier and discriminant ensembles, Information Sciences 179 (2009) 1298–1318.

- [6] Ping Li , Hong Li , Min Wu , Multi-label ensemble based on variable pairwise constraint projection, Information Sciences 222 (2013) 269–281.
- [7] Jia Zhua,, Qing Xie, Kai Zheng, An improved early detection method of type-2diabetes mellitus using multiple classifier system, Information Sciences 292 (2015) 1–14.
- [8] Yan Li, Changxin Bai, Chandan K. Reddy, A distributed ensemble approach for mining healthcare data under privacy constraints, Information Sciences (2015).
- [9] Neesha Jothi, Nur'Aini Abdul Rashid, Wahidah Husain, Data Mining in Healthcare – A Review, Procedia Computer Science 72 (2015) 306 – 313.
- [10] Nikunj C. Oza , Kagan Tumer, Classifier ensembles: Select real-world applications, Information Fusion 9 (2008) 4–20.
- [11] YongSeog Kim, Boosting and measuring the performance of ensembles for a successful database marketing, Expert Systems with Applications 36 (2009) 2161–2176.
- [12] Hesam Sagha, Hamidreza Bayati, José del R. Millán, Ricardo Chavarriaga, On-line anomaly detection and resilience in classifier ensembles, Pattern Recognition Letters (2013).
- [13] Ritaban Duttaa, Daniel Smitha, Richard Rawnsley, Greg Bishop-Hurley, James Hills, Greg Timms, Dave Henry, Dynamic cattle behavioural classification using supervised ensemble classifiers, Computers and Electronics in Agriculture 111 (2015) 18–28.
- [14] Yang Zhang, Li Zhang, M.A. Hossain, Adaptive 3D facial action intensity estimation.
- [15] Bing Gong, Joaquín Ordieres-Mere, Prediction of daily maximum ozone

threshold exceedances by preprocessing and ensemble artificial intelligence techniques: Case study of Hong Kong, Environmental Modelling & Software 84 (2016) 290-303.

- [16] Cátia M. Salgado, Susana M. Vieira, Luís F. Mendonça, Stan Finkelstein, João M.C. Sousa, Ensemble fuzzy models in personalized medicine: Application to vasopressors administration, Engineering Applications Intelligence of Artificial (2015).
- [17] B. Seijo-Pardo, I. Porto-D'iaz, V. Bol'on-Canedo, A. Alonso-Betanzos, Ensemble Feature Selection: Homogeneous and Heterogeneous Approaches, Knowledge-Based Systems (2016).
- [18] J.Prathyusha, G.Sandhya, V.Krishna Reddy," An Improvised Partition-Based Workflow Scheduling Algorithm", International Innovative Research Journal of Engineering and Technology, vol 02, no 04,pp.120-123,2017.

Cite this article as :

L. S. Rohith Anand, B. Shannmuka, R. Uday Chowdary, K. Satya Sai Krishna, "Liver Cancer Detection", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 5 Issue 1, pp. , January-February 2019. Available at doi :

https://doi.org/10.32628/CSEIT183818 Journal URL : http://ijsrcseit.com/CSEIT183818