
 CSEIT183833 | Received : 10 Nov 2018 | Accepted : 23 Nov 2018 | November-December-2018 [3 (8) : 86-94]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 8 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT183833

86

Impact of Clone Refactoring on External Quality Attributes of
Open Source Softwares

Er. Himanshi Vashisht, Sanjay Bharadwaj, Sushma Sharma
1Computer Science and Engineering Department, Haryana Engineering College, Jagadhri, Haryana, India
2,3Computer Science and Engineering Department, DAV College for girls, Yamunanagar, Haryana, India

ABSTRACT

Code refactoring is a “Process of restructuring an existing source code.”. It also helps in improving the internal

structure of the code without really affecting its external behaviour”. It changes a source code in such a way

that it does not alter the external behaviour yet still it improves its internal structure. It is a way to clean up

code that minimizes the chances of introducing bugs. Refactoring is a change made to the internal structure of a

software component to make it easier to understand and cheaper to modify, without changing the observable

behaviour of that software component. Bad smells indicate that there is something wrong in the code that have

to refactor. There are different tools that are available to identify and emove these bad smells. A software has

two types of quality attributes- Internal and external. In this paper we will study the effect of clone refactoring

on software quality attributes.

Keywords : Clone refactoring, Metrices, External Quality Attributes

I. INTRODUCTION

Refactoring is basically the behavior preserving

process. Code duplication is a serious problem with

software. Due to code reuse, it leads to duplicate code

in software. Roy et al.[2] discussed various clone

detection tools and techniques.If a code segment is

copied with some changes like addition or deletion of

statements and alters its variables name, functions

and type, then it comes under type-3 or near miss

clones [4].

Software refactoring is the super-set of software

restructuring. Martin Fowler [1] book “Improving the

Design of Existing Code” describes different 22 bad

smells in code and techniques to remove these bad

smells. Refactoring is the method of altering the

software system in such a way that its external

behavior does not change but its internal structure is

enhanced. Refactoring only modifies the internal

structure of software so that it will be easy to

maintain the software in the future. Refactoring

reduces the complexity of software and make it easy

to understand for user.

Refactoring Techniques

The technique that is used to remove clones is called

as Refactoring Techniques. These are set of measures

and steps to keep software clean. There are some

basic techniques for clone proposed by Fowler [1]:

 Extract Method- is applied when the clone

segment are to be found in methods that belong

to the same class. In this condition, extract

unified code in a new private method within the

same class [5].

 Extract and Pull up Method- is applied when the

clone segments are to be found in methods that

http://ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 87

belong to different sub classes of the same super

class. In this situation, unified code is placed in a

new protected method in the super class [5].

 Introduce Template Method- is a unique case of

the refactoring techniques. If clones do not

belong to previously clone types but have same

return type and identical signature. Then we

create an abstract method with same signature in

super class where unified code is pulled up [5].

 Introduce Utility Method- is applied when the

clone segment is to be found in methods of

dissimilar classes and the segments do not access

any instance method or variables. In this

situation, we extract a unified code into a static

method placed within a utility class [5].

Quality Attributes

Software Quality Attributes are the characteristics of

software by which quality is described and evaluated.

It is divided into two groups- Internal Quality

Attributes and External Quality Attributes. Metrics

calculation tool will calculate internal quality

attributes. External quality attributes are measured

with the help of internal quality attributes.

Internal Quality Attributes are [6] -

 Lack of Cohesion

 Coupling

 Number of Classes

 Abstractness

 Depth of Inheritance

 Lines of Codes

 Weighted Method per Class

 Complexity

 Hierarchies

 Design Size

 Polymorphism

 Encapsulation

External Quality Attributes are [6] -

 Functionality

 Effectiveness

 Flexibility

 Understandability

 Reusability

 Extendibility

II. PROPOSED ALGORITHM

 Fowler et al. [1] described the 22 bad smells and

their 72 respective techniques to refactor bad

smells. They also associated refactoring rules with

these bad smells, suggesting how to resolve these

bad smells. They declared duplicate code as a

serious kind of bad smell. It increased

maintenance cost of software. Due to increasing

use of open source software and its variants, there

is also increased use of code reuse. Due to code

reuse, it results in duplication of code.

 The International Organization for

Standardization (ISO/IEC9126) et al. [2]

published a set of international standards related

to the software engineering, such as ISO 12207

and ISO 9126. However, there is a set of cross-

references between the two standards. The ISO

9126 on software product quality and ISO 12207

on software life cycle processes had been

analyzed to investigate the relationships between

them and to make a mapping from the ISO 9126

quality characteristics to the ISO 12207 activities

and vers versa. This study presented a set of

comments and suggestions to improve the ISO

9126. The weaknesses of the cross references

between the two ISO standards had been

highlighted. In addition, this study provided a

number of comments and suggestions to be taken

into account on the next version of the ISO 9126

international standard.

 Kamiya et al. [3] proposed a clone detection tool

CCFinder (Code Clone Finder). This tool

incorporates the use of a lexical analyzer

which removes the white spaces, comments from

source code and generate token sequence of

code, Then after, token sequence is transformed

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 88

using certain rules. This transformation

regularizes the identifiers by partially removing

the context information. A special token replaces

the identifiers so that code portions with

different variable names could be returned as

clone pairs by the matching algorithm.

 Garg and Tekchandani [4] introduce an approach

to refactor the clones on the basis of their

essentiality. The approach measures the

maintenance overhead in terms of repetitiveness,

size of clones and complexity. They find clones

using CCFinder clone detection tool. After

detection of clones, calculate efforts required in

maintaining clones. They arrange clones

according to their value of maintenance

overhead. The clones which having high value

should be refactor first.

 Tstanalis et al. [5] propose an approach to check

the refactorability of clones. They defined pre-

condition which are checked during

refactorability. If these pre-condition are

satisfied, then we can remove clones easily. If

these are violated, then refactorability of that

clone is not possible. They used four clone

detector tools- CCFinder, Deckard, CloneDR,

Nicad.They found that clone with a close distance

tends to be more refactorable than more distant.

Type 1 clones are more refactorable than other

types of clones.

 Bansiya and Davis et al. [4] presented a QMOOD

(Quality Model for Object Oriented Designed)

that access quality attributes like reusability,

functionality, extendibility, flexibility,

understandability, effectiveness. QMOOD relates

low level design properties such as encapsulation,

coupling and cohesion to high level quality

attributes. They weighted quality attributes

accordance to their influence and importance in

the system.

 Fontana et al. [7] investigates the impact of clone

refactoring on quality attributes internal quality

attributes like complexity, coupling and cohesion.

They used three clone detection tools PMD,

Bahumas and CodePro on two open source

software– Ant and GhanttProject. Intellij IDEA

tool is used for refactoring. They analyze that,

after refactoring there is improvement in

cohesion, decrement in coupling, complexity and

lines of code.

 Alshayed et al. [8] investigates the effect of

refactoring on software quality attributes. He

focused on quality attributes like adaptability,

maintainability, reusability, understandability

and testability. They apply refactoring on three

open source software- terpPaint, UML tool and

Rabtpad. But after refactoring, he concludes that

it does not necessary that after refactoring there

is increase in quality of software.

III. PROPOSED STRATERGY

CCFinder [19] is used as bad clone detector tool.

Jdeodrant [15] is a refactoring plugin which is used to

refactor the clones according to their respective

techniques. Eclipse metrics plugin [27] used to

calculates the internal quality attributes of source

code. Object oriented open source software are

JChart 2D 3.2.1 [14], apache-ant 1.7.0 [2], JMeter2

2.3.2 [17] and JEdit 4.2 [16].

Steps used to re-factor clones and to calculate the

quality attributes are as following-

1. Before applying any single refactoring, calculate

the internal quality metrics (Object Oriented

Metrics) of software.

2. Detect Clones in software using Clone detection

tool CCFinder.

3. Then import result file of clone detection in

Jdeodrant plugin.

a. Identify where the software should be

refactor.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 89

b. Make a small change i.e. a single refactoring

without changing the outer behavior of the

software.

c. Test Refactor code, if works and move on to

the next refactoring.

d. If fails, rollback the last smaller change and

repeat the refactoring in some different way.

4. After applying all the refactoring techniques,

calculate the internal quality metrics of software

(Object Oriented Metrics) to determine the

impact of refactoring.

5. Calculate the external quality attributes by using

internal quality metrics.

6. Compare external quality attributes of software to

predict the impact on software quality.

IV. IMPLEMENTATION FRAMEWORK

.

The external quality attributes are dependent on the

internal quality attributes. Therefore, attributes can

be calculated by using these formulas given by

Bansiya and Davis [6].

Table 1- External Quality attributes Formula

Internal Quality attributes

Internal Quality attributes are calculated by Eclipse

Metrics [14] plug-in .We interpret these values to

calculate metrics used by Bansiya [6].

Table 2- Internal Quality Attributes formula

Design

Property

Metrics

we Used
Formulas

Design

Size[6]

Number

of Classes

 ∑

where, NOC = Total number

of classes in a package,

p = number of packages.

Hierarchies

[6]

Depth of

Inheritan

ce Tree

 DIT = Depth of inheritance

tree.

Abstractio

n [6]

Abstractn

ess

∑

 Where NoI = total number of

interfaces

 in a package

n n=total number of classes in a

package.

Encapsulati

on [6]

(Total no.

of

attributes

–static

Attributes

) / (Total

no. of

attributes

+ static

Attributes

)

 ()

Where, a(P) = number of

private attributes in a

class,

 a = total number of

attributes in a class.

Cohesion

[6]

1/Lack of

Cohesion

of

Methods

(

∑ ()
)

W here, m(A)= number of

methods accessing an

attribute A, then Calculate

the average of m(A) for all

attributes,

 m = total numbers of

methods for all classes,

 a = total number of

attributes in a class

External QA Formula Used for Calculation

Reusability -0.25*Coupling+0.25*Cohesion+0.5*

Messaging+ 0.5*Design Size.

Flexibility 0.25*Encapsulation - 0.25*Coupling +

0.5*Composition + 0.5* Polymorphism.

Understanda

bility

-0.33*Abstraction+0.33*Encapsulation-

0.33*Coupling+0.33* Cohesion-

0.33*Polymorphism-0.33*Complexity-

0.33*Design Size.

Functionality 0.12*Cohesion + 0.22*Polymorphism +

0.22*Messaging + 0.22*Design Size

+0.22*Hierarchies.

Extendibility 0.5*Abstraction - 0.5*Coupling +

0.5*Inheritance +0.5* Polymorphism.

Effectiveness 0.2*Abstraction + 0.2*Encapsulation +

0.2*Composition+ 0.2* Inheritance+

0.2*Polymorphism.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 90

 n= number of classes.

Compositio

n [6]

Number

of

Overridde

n

Methods

 ∑

where, NOA = Total number

of Attributes in a class,

 n = number of classes.

Inheritance

[6]

No. of

Overridde

n

Methods

/Number

of

Methods

 (∑

)

where, NORM= number of

overridden method in a

class,

Polymorph

ism [6]

Number

of

Overridde

n

Methods

 ∑

where, NORM = number of

overridden methods in a

class,

 n = number of classes.

Messaging

[6]

Number

of

Methods

 ∑

where, NOM = the total

number of public

methods in a class,

 n = number of classes.

Complexity

[6]

Weighted

Methods

per Class

 ∑

 Ci= complexity of method i

in a class,

 m= number of methods.

Coupling

[6]
Instability

Where Ce= efferent coupling

 .

V. RESULTS

In this section, impact of clones refactoring on

quality of softwares is analyzed by comparing various

quality attributes.

Number of clones Detected in Software

In research work, three types of clones have been

detected on four different open source softwares

JChart 2D (3.2.1), apache-ant (1.7.0), JMeter (2.3.2),

JEdit (4.2) using CCFinder. Table III provides

information about the number of clones detected in

the open source softwares using CCFinder tool.

Table 3- number of clones smell detected in software

Refactoring Impact on Internal Quality Attributes of

Software

To To find the impact of clones refactoring, first

calculate internal quality attributes of software

without applying any refactoring technique. After

removal of clones, calculate internal quality

attributes. Internal quality attributes values before

refactoring and after refactoring is shown in Table

IV and Table V respectively.

Table 4 - Internal Quality Attributes of Software

Before Refactoring

Softwares JChart2D
Apache-

ant
JMeter JEdit

TLOC 6693 115744 81307 81004

Clones 248 2798 2018 969

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 91

Table 5 - Internal Quality Attributes of Software

After Refactoring.

Refactoring Impact on Complexity of Software

Table VI, Shows the refactoring impact on

complexity of software. From Figure 1 and Figure 2,

it is clear at after refactoring weighted method per

class and MCcabe cyclomatic complexity of all the

software is reduced. So refactoring shows positive

impact on complexity.

Table 6 - Impact of Refactoring On Complexity of

Software

Comple

xity

McCabe

Cyclomatic

Complexity

Weighted methods

per Class

Software

s

Before

Refactor

ing

After

Refactor

ing

Before

Refactor

ing

After

Refactor

ing

JChart2

D

2.015 1.876(↓) 8.533 8.198 (↓)

Apache-

ant

2.109 2.0699(↓

)

18.150 17.869(↓

)

JMeter 1.864 1.822(↓) 17.896 17.434(↓

)

JEdit 3.161 3.095(↓) 21.126 20.854

(↓)

Figure 1. Impact of clones refactoring on McCabe

Cyclomatic Complexity of software

Figure 2. Impact of Clones refactoring on weighted

method per class

 Softwares

Metrics

JChart2

D

Apache

-ant

JMete

r
JEdit

Design Size 9.727 11.361 5.406
21.47

1

Hierarchies 3.636 2.689 2.914 2.382

Abstraction 0.0851 0.086 0.111 0.078

Encapsulation 0.8403 0.405 0.035 0.467

Coupling 6.818 7.205 4.383 6.882

Cohesion 2.463 2.890 2.336 3.731

Composition 1.411 2.597 2.424 2.985

Inheritance 0.882 0.123 0.123 0.158

Polymorphis

m
0.467 1.024 1.091 0.901

Messaging 3.991 8.266 8.85 5.685

Complexity 8.533 18.15 17.896
21.12

6

TLOC 6693 115744 81307 81004

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 92

Refactoring Impact on External Quality Attributes

The external quality attributes are calculated by using

formulas given by Bansiya and Davis [6]. According

to the formula given above, the values of external

quality attributes are shown in Table VII and Table

VIII.

Table 8- External Quality Attributes Values Before

Rfactoring

External

Quality

Attributes

JChart2

D

Apach

e-ant

JMete

r

JEdit

Reusability 5.770 8.734 6.616 12.79

0

Flexibility -0.555 0.110 0.684 0.339

Understandabil

ity

-7.367 -

11.395

-

8.750

-

15.26

5

Functionality 4.216 5.481 4.297 7.144

Extendibility -2.691 -2.986 -

1.529

-

2.872

Effectiveness 0.737 0.847 0.764 0.917

Table 9 - External Quality Attributes Values After

Refactoring

Figure 3. Impact of Refactoring on Reusability of

software

Figure 4. Impact of Refactoring on Flexibility of

software

Figure 5. Impact of Refactoring on Understandability

of software

Figure 6. Impact of Refactoring on Functionality of

software

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 93

Figure 7. Impact of Refactoring on Effectiveness of

software

Figure 8. Impact of Refactoring on Extendibility of

software

As shown in Figures 3 and Figure 5, Reusability and

functionality of all the four open source softwares

increased when refactoring is applied. In Figure 4,

flexibility of JChart2D, Apache-ant, JMeter is

decrease, but only JEdit flexibility is increased. In

Figure 5, understandability of JChart2D, Apache-ant,

JEdit is decrease, but only JMeter show slight

improvement. In Figure 7 and Figure 8, effectiveness

and extendibility of JChart2D, apache-ant, JMeter

decreased, only JEdit attributes values increased a

huge amount.

VI. CONCLUSION AND FUTURE WORK

Refactoring makes code easy to use. In this work

four, different softwares are used to analyze the

impact of clones’ refactoring on quality of softwares.

From experimental results, conclusion comes out that

the complexity of the softwares is reduced using

refactoring. By applying refactoring on softwares,

reusability and functionality of all the softwares is

increased and other quality attributes like flexibility,

understandability, effectiveness, extendibility is

decreased. Some refactoring techniques improved the

quality of softwares and some refactoring techniques

shows negative effect on quality Result shows that

refactoring techniques may also have inverse effect

on software quality attributes.

VII. REFERENCES

[1]. M. Fowler, K. Back, J. Brant, W. Opdyke and

D.B. Roberts, “Refactoring: improving the

design of existing code,” Addison-Wesley, New

York, 1992.

[2]. C.K. Roy, J.R. Cordy and R. Koschke,

“Comparison and evaluation of code clone

detection techniques and tools: A qualitative

approach,” Science of Computer Programming

ELSEVIER, vol. 74, pp. 470–495, 2009.

[3]. T. Kamiya, S. Kusumotoand K. Inoue,

“CCFinder: a multilinguistic token based

code clone detection system for large scale

source code,” IEEE Transaction on Software

Engineering, vol. 28, no. 7, pp. 654-670, 2002.

[4]. R. Gargand and R. Tekchandani, “Enhancing

code clone management by prioritizing code

clones,” Master’s Thesis, Thapar University,

Patiala, 2014.

[5]. N. Tsantalis, M. Mazinanian and G.P. Krishnan,

“Assessing the refactorability of software

clones, ” IEEE Transactions on Software

Engineering, vol. 41, No. 11, 2016.

[6]. J. Bansiya and C.G. Davis, “A hierarchical

model for object-oriented design quality

assessment”, IEEE Transactions on Software

Engineering, Vol. 28, No. 1, pp. 4-17, 2002.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

Himanshi Vashisht et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 86-94

 94

[7]. F.A. Fontana, M. Zanoni, A. Ranchetti and D.

Ranchetti, “Software Clone Detection and

Refactoring,” ISRN Software Engineering, 2013.

[8]. M. Alshayeb, “Empirical investigation of

refactoring effect on software quality, ”

Information and Software Technology,

ELSEVIER, 2009.

[9]. JDeodorant, URL - Retrieved from

https://marketplace.eclipse.org/content/jdeodor

ant.

[10]. JChart2D Retrieved from

https://sourceforge.net/projects/jchart2d/.

[11]. Apache-ant Retrieved from

http://ant.apache.org/.

[12]. JMeter Retrieved from http://jmeter.apache.org.

[13]. JEdit Retrieved from http://www.jedit.org.

Metrics Plugin, URL – Retrieved from

http://sourceforge.net/projects/metrics

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

