
CSEIT183858 | Received : 25 Nov 2018 | Accepted : 05 Dec 2018 | November-December-2018 [3 (8) : 190-193]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 8 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT183858

190

Comparison of JMS Products
P. Xavier Jeba1, P. Mercy2, J. Arockia Mary3

1Assistant Professor, Department of Computer Science, Holy Cross College, Tiruchirappalli, Tamil Nadu, India
2Department of Computer Science, Holy Cross College, Tiruchirappalli, Tamil Nadu, India

ABSTRACT

Before the introduction of Java Messaging Service API (JMS),developers had to absorb the complex branded

APIs of each specific messaging server from different supplier and this made creating messaging applications

hard and gave rise to minor transportability. Additionally, messaging servers from different suppliers were not

interoperable and ended in supplier limitations. JMS API is not a product but it is a Java specification for

messaging middleware from Sun and its partners. JMS defines an enterprise messaging Java API that enables

creating business applications effortlessly that can interchange business data and events not occurring at the

same time and reliably in a supplier doubting manner. The messaging server suppliers offer the service provider

interface that assists the standard JMS API. There are quite a lot of suppliers producing messaging products

which promote JMS API and choosing a certain messaging product needs to evaluate the merits and demerits of

the product.

Keywords: JMS, point-to-point, Publisher/Subscriber

I. INTRODUCTION

This paper provides a detail portrayal of Messaging

and Java support for Messaging via the Java

Messaging Service (JMS) API. This paper also

provides a wide comparison of popular Messaging

servers widely used in real time applications.

Messaging Definition:

 Messaging is a mode of communication between

software applications

 A messaging system works on a peer-to-peer

basis.

 In a messaging system there will be Sender (also

known as Producer or Client) and Receiver (also

known as Consumer).

 Each client links to a messaging agent that

provides services for creating, sending, receiving,

and reading messages

 Messaging enables distributed communication

that is loosely coupled.

 Java Messaging Service (JMS) API Definition:

 The JMS is a Java API that lets software

applications to create, send, receive, and read

messages.

 It was designed by Sun and several partner

companies and defines a common set of interfaces

and semantics that let Java applications to

communicate with other messaging

implementations.

 It maximizes the portability of JMS applications

across several JMS providers in the same

messaging domain.

 It enables communication among software

applications that are loosely couples but also

makes it asynchronous and reliable.

http://ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

P. Xavier Jeba et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 190-193

 191

JMS Usage Provides The Following :

 It lets a client component (Sender) to send

information to another (Receiver) and to carry

on operating without waiting for immediate

response from the Receiver.

 It provides loose coupling between message

Sender and Receiver compared to a tightly

coupled Remote Procedure Call (RPC).

 JMS API improves the Java Enterprise Edition

(JEE) platform by simplifying enterprise software

applications development, letting loosely

coupled, asynchronous, reliable interactions

among JEE components and legacy systems

capable of messaging.

 JMS API support following messaging styles –

 Point-To-Point (PTP) whichis also known as

Queue

 Publish/Subscribe (pub/sub) which is also known

as Topic

 It enables communication between diverse

mechanisms of a distributed application.

JMS API Architecture:

A JMS application has the following parts-

 JMS Provider: It is a messaging system that

implements the JMS interfaces and provides

administrative and control features. E.g.: Rabbit

MQ

 JMS Clients: They are the Java software programs

that produce and consume messages.

 Messages: They are the objects that communicate

information between JMS clients (Sender and

Receiver)

Administered Objects: They are preconfigured JMS

objects created by an administrator for the use of

clients, in the JMS system (E.g.: Rabbit MQ) of the

JMS provider. The two kinds of JMS administered

objects are Destinations and connection factories.

High-Level JMS Architecture

JMS Sender and Receiver Architecture

Difference Between Point-To-Point (Queue) And

Publish/Subscribe (Topic):

There are two types of message models which are the

point-to-point model and publish or subscribe model.

The point-to-point model is also known as Queue

and the publisher or subscriber model is also known

as Topic.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

P. Xavier Jeba et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 190-193

 192

The following table depicts the differences between

Queue and Topic models:

Queue Topic

Point-to-point model Publish/subscribe model

Only one receiver gets

the message

Multiple receivers

subscribe to the message

Messages will be

delivered in the order

sent

Messages will not be

delivered in the order sent

Each message is

processed only once in

Queue

Each message is processed

multiple in Topic

Consumer client

acknowledges on

receiving message

Consumer client does not

acknowledges on receiving

Queue knows

theconsumer of the

message.

Topic does not know

theconsumer of the

message.

JMS Message Brokers:

There are several message brokers (sever) available

which fully implement JMS API. Each message

broker has pros and cons.We will compare the

following two JMS compliant message products

 RabbitMQ

 Apache Kafka

 RabbitMQ Apache Kafka

Open source Yes Yes

Language

written

Erlang Scala and Java

Protocol TCP TCP

Scheduled

Message

Supported Not Supported

Message

Storage

Uses a custom

database to

store the

messages

Distributed and

partitioned based

storage. Messages

in partition

represented as a

log stream.

Message Filter Supported

JMS Support Yes Yes

Push/Pull

model

Push model Pull model

Partition

support

No Kafka can divide

among

Consumers by

partition and send

those

message/records

in batches.

Maximum

messages

handling

Tests show

about 20,000

messages

handled per

second on a

single server

Tests show about

1,00,000 messages

handled per

second on a single

server

Consumer type For slow

consumers

For fast and slow

consumers

Clustering and

replication

support

Partial support Full support

Design

purpose

It is designed

as a general

purpose

message broker

It is designed for

high volume

publishes-

subscribe

messages and

streams, meant to

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

P. Xavier Jeba et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 190-193

 193

be fast, scalable

and durable.

Responsibility

of reading the

messages

Consumer does

not take the

responsibility

of reading the

messages

Consumer has the

responsibility of

reading the

messages.

Read and

unread

message

retention.

It tracks which

messages were

read by each

consumer and

retains unread

messages for a

set amount of

time

It does not

attempt to track

which messages

were read by each

consumer and

retains both read

and unread

messages for a set

amount of time

II. CONCLUSION

The above table provides a wide comparison between

RabbitMQ and Apache Kafka. It also provides listing

of the various features, advantages and limitations.

Based on the above comparison we conclude that,

Apache Kafka has more advantages over the

RabbitMQ, because it is fast, scalable and durable.

RabbitMQ could be recommended for applications

which are slow and fewer messages are handled

while Apache Kafka is recommended for applications

which require handling fast and larger messages.

III. WEB REFERENCES

[1]. https://docs.oracle.com/javaee/6/tutorial/doc/bn

cdr.html

[2]. https://www.rabbitmq.com/#features

[3]. https://kafka.apache.org

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

