
CSEIT18387 | Received : 01 Nov 2018 | Accepted : 12 Nov 2018 | November-December-2018 [3 (8) : 09-17]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 8 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT18387

09

ABDM : Agent Based Live Migration of Virtual Machines in Cloud
Computing For Multimedia Data

K. Syed Ibrahim*1, Dr. A. R. Mohamed Shanavas2
*1Research Scholar, Baharathidasan University, Tiruchirappalli, India
2Associate Professor, Jamal Mohamed College, Tiruchirappalli, India

ABSTRACT

Migration time is one of the metric to measure the performance of the algorithm for live migration. In this

paper we have introduced a new parameter for live migration of virtual machines (VM) called the „Exit Time‟

which is defined as the time to eject the state of one or more VMs from the source node. Exit Time defines how

rapidly the VM can be taken out from the source node and its resources are freed for reallocating other tasks.

We present an Agent Based Live Migration which disconnects the source node from the destination node

during migration to reduce the exit time if the destination is slow. The source distributes the memory of VMs

to multiple intermediate nodes organized by a middleware. Simultaneously, the destination collects and merges

the VMs‟ memory from the intermediate nodes. Thus exit from the source node is no longer resisted by the

receiving speed of the destination. We support simultaneous live exit of multiple VMs and our ABDM

implementation in the CloudSim platform reduces the exit time by a considerable amount against the

traditional pre-copy and post-copy migration at the same time keeping the total migration time when the

destination node is sluggish than the source.

Keywords : Exit Time, Live Migration, Virtual Machine, QoS

I. INTRODUCTION

Virtual Machines (VMs) live migration [3], [4], [5], [6]

is used in datacenters for providing best Quality of

Service (QoS) with respect to system maintenance,

consolidation, load balancing and power savings. The

performance of live migration is generally measured

using the conventional parameters like downtime,

network traffic, total migration time overhead, and

performance degradation of applications.

In this paper, we have used a new parameter called

„exit time‟, which can be defined as the time taken to

absolutely exit the state of one or more VMs being

migrated from the source node. In most of the

situations rapid removal of VMs from the source

node is very important in order to save the resources

in the host like energy, memory and processing

cycles. We have used an agent based divide and

merge VM live migration technique for quickly

ejecting the entire VMs from the source node and

merging at the destination node. For instances, cloud

administrators may wish to save energy by switch off

additional resources in a server [7], [8], [9], [10], [11],

[12], quickly remove hotspots by scaling down the

physical resources for performance assurance [13],

quickly remove the lower priority VMs to

accommodate other higher priority ones, perform

emergency maintenance [14] or handle imminent

failures.

A. Defining Live Migration

Live migration denotes the process of transferring a

running virtual machine or application from one

http://ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 10

physical machine to another physical machine

without disconnecting the client or application.

Memory, storage, and network connectivity of the

virtual machine are transferred from the original

computer called as the source node to another

computer called as destination node.

There are two major types of Live Migration namely

pre-copy migration and post-copy migration.

In pre-copy memory migration, the migration

manager typically copies all the memory pages from

source to destination while the VM is still running on

the source. If some memory pages change or making

fault during this process, they will be re-copied until

the rate of re-copied pages is greater than the page

dirtying rate. [1].

Post-copy VM migration is originated by suspending

the VM at the source node. With the VM suspended,

a least subset of the execution state of the VM with

CPU state, registers and memory state is transferred

to the destination node. The VM is then restarted at

the destination. Simultaneously, the source

dynamically pushes the remaining memory pages of

the VM to the destination. This process is called as

pre-paging. At the destination, if the VM tries to

access a page that yet to be received, it generates a

page-fault. These faults, called as network faults, are

caught at the destination and redirected to the source.

On seeing this request the source node resends the

faulted page. Performances of applications running

inside the VM are degraded by too many network

faults. Hence pre-paging can dynamically adapt the

page transmission order to network faults by actively

pushing pages in the vicinity of the last fault [2].

Figure 1. Conventional VM migration

In the conventional live VM migration methods [3],

[4], [5], the exit time is equal to the total time for

migration, which can be defined as the period from

the time when the source node starts transferring the

VM to the time point when VM restarts the

execution after the destination node completely

received the entire state of the VM. The migration

time will be very slow if the source node straightly

transfers the VM‟s state to the destination host over a

TCP network. Therefore VM transmission will be as

slow as the slower node and the source is connected

to the destination for the full duration of the VM

migration.

There are many reasons for a destination node to

receive a VM slower than a source can transmit it:

i. The resource in the destination node may be busy

with other jobs which might not be predicted by

the VM migration algorithm.

ii. The network may be slow due to congestion.

iii. The destination node may be a consolidation

server that is simultaneously receiving VMs from

several sources, which cause the speed reduction

for individual VMs.

iv. Finally, importance may be given to transmit the

idle or less important VMs from the source to

vacate resources for more significant VMs.

If the source and destination nodes are connected for

a long time for migration to be completed, it will

create unnecessary problems. For example, system

optimization will not be effectively taking place, if it

relies on the transmission time. Moreover, long

duration migration affects the performance of the

other VMs that exist in the node.

In this paper we propose a novel idea which makes

the VM migration very fast if the destination host is

slower than the source node. This process contains

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 11

three steps. As the first step the source and the

destination nodes are disconnected. In the second

step an agent distributes the state of the VM from the

source node to the intermediate nodes as quick as

possible with the maximum speed of the source node.

Finally in the last step, the agent collects the VMs

from the intermediate nodes, merges and sends to the

destination when the local resources become

available.

In our proposed technology we present an Agent

Based Divide and Merge VM live migration which

decreases the ejection time by migrating VMs using

the intermediate nodes. A middleware component

which offers a brokerage service matches the demand

and availability of the memory devices for VM live

migration. The intermediate nodes are used as

temporary buffer for the migrated VMs from the

source. Once the source node started the migration,

it sends a request to the agent for memory devices.

The agent divides the VM to multiple nodes

including the destination node. The intermediate

nodes are the other nodes in the cloud like network

caches or some storage devices. The memory and

bandwidth required for the VMs transmission is

acquired by accumulating all the buffers in the

intermediate nodes. Simultaneously the agent

collects and merges the memory from the

intermediate nodes and sends back to the destination

node. Hence by temporally disconnecting the source

and destination the source can eject the VMs at its

maximum speed even though the destination is not as

fast as the source. Our main contributions are given

below.

We have used agent based memory virtualization for

live migration in this paper. A Migration Agent

Middleware (MAM) layer collects the information

about the free memory and CPU resources among all

the intermediate nodes and keeps an index of the

available resources. In datacenters, more amounts of

free memory and CPU resources are available since

all the datacenters have surplus infrastructures [15]

and those machines are used as intermediate nodes by

the MAM.

II. RELATED WORKS

In this section we discuss some of the existing

research in minimizing the time for live migration.

In [5] and [6] the authors proposed the post-copy

migration which decreases the total migration time

and network overhead in contrast with the pre-copy

migration given in [3] and [4]. In [17], [21] and [22]

the authors presented methods to optimize the live

migration of multiple VMs using various techniques

like memory compression, memory deduplication,

and maintaining the order of VMs migration order.

A number of optimizations for storage and memory

are integrated in XvMotion [16]. Optimizations such

as ballooning [5] dropping the guest cache [19]

deduplication [20] and compression [39] minimize

time form migration and the network traffic and

migration time. Post-copy VMs migration is

presented in SnowFlock [23] which implements

cloning of VMs in multiple hosts to execute High

Performance Computing (HPC). The partial

migration technique is proposed by Jettision [7] in

which only the working set of an idle VM is migrated

to save the energy by combining idle VMs from

number of PCs at a central server. In [18] a traffic-

sensitive migration is proposed which monitors the

traffic at the nodes to choose any one from pre-copy

or post-copy of VMs. The researches have

demonstrated In the post-copy [5], [6], migration

method, the VM is first adjourned in the source node

and the state of the CPU is transferred to the

destination where the VMs are received ad re-

assembled immediately.

III. Proposed ABDM Architecture

In the conventional live VM migration shown in

figure 1, the source node directly sends the VM‟s

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 12

state to the destination node. The source and

destination nodes have Migration Managers for each

VM being migrated.

Figure 2. Architecture of ABDM VM live migration

A TCP connection between the Migration Managers

transmits the data about VM‟s memory and state of

the CPU and control information such as

synchronization, handshakes etc. This connection is

put off only after the destination receives the entire

VM. The ABDM approach uses a Migration Agent

Middleware (MAM). The architecture of ABDM

approach is shown in figure 2. When the source

node wants to migrate a VM, it sends a migration

request to the MAM. The MAM receives the request

and allocates the memory and CPU resources as per

the requirement. Then the source node sends the

state of the VM to MAM. The divider „D‟ receives

the entire VM and distributes it among the allocated

resources. At the same time the merger „M‟ collects

the parts of the VM from the intermediate resources

and merges them and sends to the destination node.

The agent MAM is acting as a broker as well as speed

matcher between the source and the destination.

The functioning of ABDM is given below:

i. A customer node connected with the cloud

requested a multimedia streaming data.

ii. The source node which is already part of the

cloud sends the requested data to the customer

node.

iii. The customer started moving so that the source

node needs to migrate the VM contents to other

node to which the customer node connects

while moving.

iv. The source node request the agent MAM for VM

migration since the network speed between the

source node and the destination nodes is not

matching.

v. The divider in the agent allocates the memory

and CPU resources and divides the VMs based

on the availability of the resources.

vi. The merger in the agent merges the parts of the

VM and sends back to the destination with the

speed that matches with the destination.

3.1 Migration Agent Middleware (MAM)

Migration Agent Middleware (MAM) is an

intermediate layer, through which the source node

transfers the VM‟s memory to the destination. The

MAM layer simplifies by modularizing the

architecture. The MAM layer collects the available

free memory of all intermediate nodes and keeps an

index. The index contains the address of each device

with the amount available memory. When the

migration manager at the source node sends a request

to the MAM for VM migration the MAM allocates

the required amount of memory by dividing the VM

into pieces. Then the source node writes the VM‟s

memory to the allocated devices. The migration

manager at the destination concurrently reads the

VM‟s memory from the devices. No physical memory

is reserved in advance at the intermediate nodes;

instead, the MAM layer at the source uses the

memory availability information at the intermediate

nodes to dynamically decide where to distribute the

memory pages.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 13

3.2. Dividing Phase

The objective of the dividing phase is to quickly eject

the VM‟s memory and execution state from the

source node. Initially a TCP connection is

established between the Migration Managers at the

source and the destination nodes. Next, the

migration manager sends a migration request to

MAM to start the migration process. The divider „D‟

is responsible for dividing the VM‟s memory and

distributes them among the intermediate devices.

The CPU state of the VM is conveyed to the

destination node in which the VM is going to resume

immediately as in the post-copy migration. Since the

VM‟s memory still exist in the source node, the VM

in the destination node generates page-faults its

memory. The destination node‟s migration manager

transmits all page-fault requests as a control message

during the dividing phase to the source node‟s

migration manager over the TCP network, which

then redirects the same to the MAM. The MAM

layer responds for this control message and resends

the error page to the destination. This process is as

similar as how the demand-paging is handled in the

conventional post-copy migration. Each page written

to the MAM layer is sent to one of the intermediate

nodes based on its offset in the VM‟s memory. The

fault-tolerance of migration is improved by

replicating each page to multiple intermediate nodes.

For each page sent to the MAM, the divider „D‟ at the

source node directly sends the corresponding control

information to the destination‟s Migration Manager

over the TCP network. The control message includes

the address of each page that was divided and its

status such as optimization by compression or

deduplication, applied to the page. This message is

used later by the Merger „M‟ at the destination node

to collect the VM‟s pages from the MAM layer. Once

the entire VM has been ejected, the resources used at

the source node are freed reused for other VMs.

3.3 Merging Phase

The merging phase recovers the VM‟s memory pages

from the intermediate node. This phase runs

simultaneously with the divider phase at the source.

The destination node starts executing the VM

immediately as it receives the VM‟s execution state

from the source node. The merger phase contains

two modules: (a) Active collection or pre-paging the

VM‟s pages from the intermediaries and (b)

Recollecting the faulted pate or demand-paging from

the source node.

In pre-paging, the merger „M‟ at the destination

node‟s migration manager collects the VM‟s state

from the intermediate nodes merge them as the full

VM and sends it to the migration manager of the

destination. Moreover, the migration manager hears

the control TCP connection on which the „D‟ at the

source node sends information about the divided

pages. The destination‟s migration manager uses the

control message received from the source to copy the

received pages from the MAM into the VM‟s memory.

The demand-paging module is working as follows.

The merger phase is responsible for recollecting the

VM‟s page merging and giving as full VM to the

destination. This has to be done quickly to minimize

the migration time and to maintain QoS. Hence, if

the VM faults on any page during this merging phase,

the Migration Manager at the destination node

directly sends a request to the source node for the

faulted pages. These requests are called as demand-

paging which will be again handled by the MAM

layer at „D‟ which resends the error page over the

TCP connection to the source. In order to reduce the

latency in handling page faults, higher priority is

given by the source node‟s migration manager for the

faulted pages.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 14

II. IMPLEMENTATION

We have implemented ABDM using CloudSim

virtualization platform. We describe the

implementation details of the MAM and the

Migration Managers in the following sections.

4.1 Migration Agent Middleware (MAM) Layer

We have created the MAM as a distributed peer-to-

peer communicating system among computing nodes

in an Ethernet network which shares the free

memory in the devices. For every VM being

migrated, the MAM client module at the source and

destination nodes shows a dummy device to the

migration managers. The dummy device is a logical

representation of the aggregated memory; no physical

memory is reserved in advance at the intermediate

nodes. The MAM servers periodically broadcast

resource announces their identity and memory

availability to MAM clients. The source MAM client

uses this information to divide and sent the VM pages.

The dummy device simply allows the migration

managers to transfer pages without knowing the

identity of each intermediate device and the location

of each page.

Every MAM server acts as an index server as well as a

content server. The index server keeps the record of

the location of a page whereas the content server

saves the content of the page. The contents and their

location is maintained by the index server by

mapping of page offsets to content hash values for

each memory page within its offset range. This

mapping is used to locate the content server for a

given page offset.

4.2. Migration Manager

The migration manager is created one for each VM

that interfaces between the VM and the hypervisor

for processing the VM migration. The migration

managers both at the source node and the destination

node open the dummy device sent by the MAM layer

to proceed with the divide and merge phases. We

adapt a general post-copy implementation from the

Yabusame project [4] to implement the migration

managers. In the migration process, the migration

manager at the source node uses a TCP connection

with the destination to transfer the control

information about each page, which includes the

physical address of the page in the VM‟s memory and

its offset address in the MAM layer.

III. Results and Performance Evaluation

In this section, we evaluate the performance of

ABDM migration by comparing with the standard

pre-copy and post-copy migration. We evaluate the

exit times when migrating single and multiple VMs,

degrading the performance on both migrating and

co-located VMs and the impact of using multiple

intermediates. For all the experiments, each data-

point shows an average performance over six

iterations. We run all the experiments using dual

quad core servers with 2.3GHz CPUs, 8GB DRAM,

and 1Gbps Ethernet cards. Ubuntu 14.04.2 is used for

running all VMs with Linux kernel 3.2, have 2 virtual

CPUs (vCPUs) and for both the hard disk and

network adapter we have used Virtio - An I/O

virtualization framework for Linux.

Figure 3 shows that the total migration time of

ABDM is only slightly higher than pre-copy and

post-copy (by up to 10%). This overhead is

reasonable because of two reasons. First, the VM

pages are transmitted in two hops to the destination,

but in pre-copy and post-copy they are transmitted in

single hop. Secondly, our implementation of the

ABDM presently provides around 750 Mbps to

800Mbps throughput in a 1Gbps Ethernet when the

intermediate nodes concurrently handle sending and

receiving whereas direct TCP connection between

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 15

source node and the destination node can achieve up

to 900Mbps throughput. Figure 4 shows the ejection

times and the total migration times for the migration

of a 5GB busy VM.

Figure 3. Ejection time and Total Migration Time

(TMT) for migrating 5GB idle VM to a busy

destination

Figure 4. Ejection time and Total Migration Time

(TMT) for migrating 5GB busy VM to a busy

destination

Figure 5 shows the ejection time for the migration of

multiple VMs. For migrating up to 3 VMs, the

destination node does not feel any memory burden,

therefore all techniques, excluding pre-copy

migration of a busy VM are good. For the migrating

4 and 5 VMs, ABDM delivers a lower ejection time

than pre-copy and post-copy because the link

between the source and MAM layer is free and non-

congested even though the destination is under

memory burden.

Figure 5. Ejection Time for increasing

number of VMs

Figure 6. Reduction in ejection time when

 using multiple intermediates

Figure 6 illustrates that the migration of one idle 5GB

VM to a memory reserved destination while

increasing the intermediate noes. The destination

has 12GB of memory and hosts two 5GB VMs.

During migration, the destination swaps out pages to

accommodate the incoming VM.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 16

IV. CONCLUSION

Maintaining QoS is an important agenda in cloud

computing platform. There are several parameters

we use to measure the performance of the cloud

platform. It is still more important when accessing

the multimedia content using mobile devices. Virtual

Machine migration is a key technique for

maintaining QoS in mobile cloud environment.

Traditionally the performance of live migration of

virtual machines is measured using several

parameters. In this paper we have used the exit time

as one of the metric to measure the migration of VM

from the source node. We have used an agent based

migration technique to smoothly distribute and

merge the states of the VMs and the effectiveness of

our approach is tested by conducting experiments

using CloudSim simulator and the simulation results

illustrates that the migration time is reduced

considerably in the rate of 4 while maintaining the

quality of the content of the media stream.

V. REFERENCES

[1] Moghaddam, F.F. and Cheriet, M., 2010, April.

Decreasing live virtual machine migration

down-time using a memory page selection

based on memory change PDF. In Networking,

Sensing and Control (ICNSC), 2010

International Conference on (pp. 355-359).

IEEE.

[2] Hines, M.R., Deshpande, U. and Gopalan, K.,

2009. Post-copy live migration of virtual

machines. ACM SIGOPS operating systems

review, 43(3), pp.14-26.

[3] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield, “Live

Migration of Virtual Machines,” in Network

System Design and Implementation, 2005.

[4] M. Nelson, B. H. Lim, and G. Hutchins, “Fast

Transparent Migration for Virtual Machines,”

in USENIX Annual Technical Conference,

2005.

[5] M. R. Hines, U. Deshpande, and K. Gopalan,

“Post-copy Live Migration of Virtual

Machines,” SIGOPS Operating System Review,

vol. 43, no. 3, pp. 14–26, 2009.

[6] T. Hirofuchi and I. Yamahata, “Yabusame:

Postcopy Live Migration for Qemu/KVM,” in

KVM Forum, 2011.

[7] N. Bila, E. J. Wright, E. D. Lara, K. Joshi, H. A.

Lagar-Cavilla, E. Park, A. Goel, M. Hiltunen,

and M. Satyanarayanan, Energy

[8] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic

Placement of Virtual Machines for Managing

SLA Violations,” in Integrated Network

Management, May 2007.

[9] A. Verma, P. Ahuja, and A. Neogi, “pMapper:

Power and Migration Cost Aware Application

Placement in Virtualized Systems,” in

Middleware, 2008.

[10] T. Das, P. Padala, V. Padmanabhan, R. Ramjee,

and K. G. Shin, “LiteGreen: Saving Energy in

Networked Desktops Using Virtualization,” in

USENIX Annual Technical Conference, 2010.

[11] N. Tolia, Z. Wang, M. Marwah, C. Bash, P.

Ranganathan, and X. Zhu, “Delivering Energy

Proportionality with Non Energy- Proportional

Systems - Optimizing the Ensemble.”

HotPower, 2008.

[12] A. Jaikar, D. Huang, G.-R. Kim, and S.-Y. Noh,

“Power efficient virtual machine migration in a

scientific federated cloud,” Cluster Computing,

vol. 18, no. 2, pp. 609–618, 2015.

[13] T. Hirofuchi, H. Nakada, S. Itoh, and S.

Sekiguchi, “Reactive Consolidation of Virtual

Machines Enabled by Postcopy Live

Migration,” in Virtualization Technologies in

Distributed Computing, June 2011.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 8, November-December-2018 | http:// ijsrcseit.com

 K. Syed Ibrahim et al. Int J S Res CSE & IT. 2018 November-December-2018; 3(8) : 09-17

 17

[14] S. Setty and G. Tarasuk-Levin, “vMotion in

VMware vSphere 5.0: Architecture,

Performance and Best practices”, in VMworld

2011, Las Vegas, Nevada, USA, 2011, p. 24

[15] J. Hwang, A. Uppal, T. Wood, and H. H.

Huang, “Mortar: Filling the Gaps in Data

Center Memory,” in Proc. of Virtual Execution

Environments (VEE), 2014.

[16] A. J. Mashtizadeh, M. Cai, G. Tarasuk-Levin, R.

Koller, T. Garfinkel, and S. Setty, “XvMotion:

Unified Virtual Machine Migration over Long

Distance,” in Proceedings of the USENIX

Annual Technical Conference, 2014.

[17] U. Deshpande, B. Schlinker, E. Adler, and K.

Gopalan, “Gang Migration of Virtual Machines

using Cluster-wide Deduplication,” in

International Symposium on Cluster, Cloud

and Grid Computing, May 2013.

[18] U. Deshpande and K. Keahey, “Traffic-

Sensitive Live Migration of Virtual Machines,”

in International Symposium on Cluster

Computing and the Grid Environments, 2015.

[19] C. Jo, E. Gustafsson, J. Son, and B. Egger,

“Efficient Live Migration of Virtual Machines

Using Shared Storage,” in Virtual Execution

Environments, March 2013.

[20] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan,

“Live Virtual Machine Migration with

Adaptive Memory Compression,” in Cluster

Computing and Workshops, August 2009.

[21] R. K. Hui Lu, Cong Xu and D. Xu, “vHaul:

Towards Optimal Scheduling of Live Multi-VM

Migration for Multi-tier Applications,” in 8th

IEEE International Conference on Cloud

Computing (Cloud 2015), New York, NY, June

2015.

[22] H. Liu and B. He, “VMbuddies: Coordinating

Live Migration of Multi-Tier Applications in

Cloud Environments,” Parallel and Distributed

Systems, IEEE Transactions on, vol. 26, no. 4,

pp. 1192– 1205, 2015.

[23] H. Lagar-Cavilla, J. Whitney, A. Scannell, P.

Patchin, S. Rumble, E. de Lara, M. Brudno, and

M. Satyanarayanan, “SnowFlock: Rapid Virtual

Machine Cloning for Cloud Computing,” in

EuroSys, 2009.

Volume%203,%20Issue%208,%20November-December-2018%20
http://www.ijsrcseit.com/

