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ABSTRACT 

 

A two dimensional problem for an infinite half space is formulated, to study the thermoelastic response due to 

the presence of a heat source varying periodically with time. The Lord-Shulman theory of thermoelasticity 

with one relaxation time is considered. The bounding surface is traction free and subjected to a known 

temperature distribution. Integral transform technique is developed to find the analytic solution in the 

transform domain by using direct approach. Inversion of transforms is done by employing Gaver-Stehfast 

algorithm. Mathematical model is prepared for Copper material and numerical results for temperature, 

displacements and stresses thus obtained are illustrated graphically. 

Keywords: Thermoelastic; half-space; Lord-Shulman; heat source. 

 

I. INTRODUCTION 

 

Thermoelastic problems are used to study the 

thermal stresses in an elastic body under high 

temperature gradients. The problems of 

thermoelasticity are broadly classified into two 

categories, namely static and dynamic problems. The 

problems dealing with dynamic thermal stresses are 

fundamentally important in engineering processes 

and have paved the way for technologies which 

operate in high temperatures such as nuclear reactors, 

aerodynamic structures, etc. The classical coupled 

thermoelasticity theory finds its first mention in Biot 

[1]. In non-classical theories of thermoelasticity, the 

Fourier heat conduction equation is generalized with 

the introduction of one relaxation time obtained by 

Lord and Shulman [2]. Various authors [3-8] 

contributed to the problems on generalized 

thermoelasticity. Recently, a lot of interest has 

developed in fractional order theory of 

thermoelasticity [9-15]. 

In this paper, a non-classical thermoelastic problem 

in a half space with a heat source is studied. The 

bounding surfaces are free of all loadings and 

subjected to a known temperature distribution. 

Gaver-Stehfast algorithm [7-9] is used to invert the 

Laplace transforms. All the integrals were evaluated 

using Romberg’s integration technique [10] with 

variable step size.  

 

II. FORMULATION OF THE PROBLEM 

 

Consider a homogeneous isotropic thermoelastic solid 

occupying the region 0z and 0 r    .The z-axis 

is perpendicular to the bounding plane. The problem 

formulation is under the perview of  Lord-Shulman 

theory of generalized thermoelasticity with one 

relaxation time. We shall assume that the initial state 

of the medium is quiescent at a temperature 0T . The 

surface of the medium is free from mechanical loads 

and a known temperature distribution is applied. A 
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heat source is applied on the domain. Cylindrical 

polar coordinates ),,( zr   are used.  

 

The problem is thus two-dimensional with all 

functions considered depending on the spatial 

variables r and z  as well as on the time variable t . 

The displacement vector, thus, has the form

),0,( wuu =


. 

The equations of motion can be written as  
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The generalized equation of heat conduction has the 

form  
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where T  is the absolute temperature,  is the density 

of the medium, 0 is the relaxation time, Q is the 

heat source and e  is the cubical dilatation given by 

the relation  
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The following constitutive relations supplement the 

above equations 
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We shall use the following non-dimensional variables 

ηtct,ηwcw,ηucu,ηzcz,ηrcr
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=c is the speed of 

propagation of isothermal elastic waves. 

Using the above non-dimensional variables, the 

governing equations take the form (dropping the 

primes for convenience) 
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while the constitutive relations (6)-(8), becomes 
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Combining equations (9) and (11), we obtain upon 

using equation (5), 
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We assume that the initial state is quiescent, that is, 

all the initial conditions of the problem are 

homogeneous. 

The thermal and mechanical boundary conditions of 

the problem at 0=z are taken as  

= rtrftr 0,),(),0,(   (16) 

= rtrzz 0,0),0,(    (17)

= rtrrz 0,0),0,(   (18) 

where ),( trf are known function of r and t .  

Eqns. (1)-(18) constitute the generalized 

thermoelastic formulation of the problem on 

axisymmetric half space. 
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III.  SOLUTION OF THE PROBLEM 

 

Applying the Laplace transform defined by the 

relation, 
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0
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to all the non-dimensional equations (9)-(18), we get, 
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   Eliminating e  between the equations (22) and (23), 

one obtains, 
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After factorization the above equation becomes, 
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where 2

1k and 2

2k are the roots with positive real 

parts of the characteristic equation 
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The solution of Eq. (30) is written in the form,   

p ++= 21      
(32)    

where i  is a solution of the homogenous equation, 
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and p is a particular integral of equation (30). 

In order to solve the problem, the Hankel transform 

of order zero with respect to r is used. The Hankel 

transform of a function ),,( szrf  is defined by the 

relation, 
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where
0J is the Bessel function of the first kind of 

order zero and is the Hankel transform parameter. 

The inversion of Hankel transform is given by the 

relation 
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Applying the Hankel transform to equation (33), we 

get, 
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The solution of the above equation is written in the 

form 
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Applying Hankel transform to the equation (30), we 

get, 
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The periodically varying heat source ),,( tzrQ in 

cylindrical co-ordinates is taken in the following 

form  
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where 0Q  is the strength of the heat source and )(r

is the well known Dirac’s delta function. 

On applying Laplace transform and Hankel transform 

to equation (39), we get, 
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The solution of the equation (38) has the form, 
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Then the complete solution in the transformed 

domain is obtained as  
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On applying the inverse Hankel transform to 

equation (42), we get, 
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Similarly eliminating   between equations (22) and 

(23), we get,  
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On applying Hankel transform to equation (44), we 

get, 
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Complete solution of equation (45) is obtained as, 
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Taking the inverse Hankel Transform to equation 

(46), one obtains, 
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Applying Hankel transform to equation (21) and then 

using equations (42) and (46), the axial displacement 

component is obtained as, 
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On applying the inverse Hankel transform to 

equation (48), we get, 
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Applying the Hankel transform to equation (20) and 

using equations (42), (46) and (48), we get, 
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On applying inverse Hankel transform to equation 

(50), one obtains, 

( ) ( )
( ) 













drJ

s

eQ

qq

s

esA

eqsB

u

s

i

zq
i

zq

i






−

=

−

−

















































+

++
−

−
=

0

1

222

0

2
2

2
1

0

2

12

3

)(

11

),(

),( 3

 

(51) 

On using equations (43), (47), (49) and (51) in 

equations (25) and (26), we obtain the stress 

components as, 
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After applying the Hankel transform to equations (27) 

and (28), the boundary conditions take the form,  
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On applying the boundary conditions (54) and (55) to 

equations (43), (52) and (53), the system of linear 

equations involving unknown parameters 
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On solving the system of linear equations (56) - (58) 

unknown parameters are determined and the 

complete solution of the problem is obtained in the 

Laplace transform domain. 

 

IV.  INVERSION OF DOUBLE TRANSFORMS 

 

Due to the complexities involved in the inversion of 

the  Laplace transforms, we employ a numerical 

scheme based on Gaver-Stehfast algorithm. Gaver [16] 

and Stehfast [17 ,18] derived the formula given below. 

By this method the inverse )(tf  of the Laplace 

transform )(sf is approximated by, 
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where K is an even integer, whose value depends on 

the word length of the computer used. 2/KM =  and 

m is the integer part of the 2/)1( +j . The optimal value 

of K  was chosen as described in Gaver-Stehfast 

algorithm, for the fast convergence of results with 

the desired accuracy. The Romberg numerical 

integration technique [19] with variable step size was 

used to evaluate the integrals involved. All the 

programs were made in mathematical software 

Matlab. 

 

 

 

 

 

V.  NUMERICAL CALCULATIONS 

 

)()(),( 0 tHraHtrf −=   (61) 

where 0 is a constant temperature, (.)H  is a 

Heaviside unit step function.  

On applying Hankel and Laplace transform to 

equation (61), we get, 

s

aJa
sf






)(
),( 10* =

    

(62)

 
For the purpose of illustration, a mathematical model 

is prepared for a Copper material with the following 

material properties, 
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 The numerical values for temperature  and the 

axial stress component zz  have been calculated for 

different time instants 1,4.0,1.0=t , along the radial 

direction and are displayed graphically for Lord-

Shulman theory (L-S theory) and the particular case 

of Classical Coupled thermoelasticity (CT theory)  as 

shown in figure 1-2 respectively .  

 

Figure 1 depicts the non-dimensional temperature 

distribution along the radial direction at different 

time instants. The variation in values observed for 

the two theories (CT and LS) in the plots. Due to the 

application of the heat source, it is observed that the 

values of non-dimensional temperature   drops 

gradually along the radial direction till 5.2r = and 

then it increases till 7r = . 

 

Figure 2 describes the axial stress zz  along the radial 

at different time instants. Different profiles of axial 

stress are seen at small times (i.e. at 4.0,1.0=t ) and 

large times (i.e. at 1=t ). The difference in results for 

LS and CT is observed. 
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Figure 1. Distribution of dimensionless temperature 

along radial direction. 

 

 
Figure 2. Distribution of dimensionless axial stress 

along radial direction. 

 

VI. CONCLUSION 

 

A problem in non-classical thermoelasticity (LS 

model) is formulated for half space with a heat source 

and the results are compared for the model with CT. 

It is observed that the non-dimensional temperature 

and axial stress component along the radial direction 

predicts changes for small and large times. This type 

of behaviour of the variables is observed due to the 

presence of the periodically varying heat source 

distributed over the radial direction. Due to the 

presence of relaxation parameter in the field 

equations, the heat wave assumes finite speed of 

propagation. Finally, it is concluded that the solutions 

in this problem will prove to be useful to determine 

the thermal behaviour in important engineering 

problems by using the more realistic non-classical 

model of thermoelasticity. 
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Appendix: 

Nomeclature: 

r  Radius 

t  Time 

T    Temperature 

0T       Reference temperature 

       Temperature change 

( ), ,Q r z t              Heat source 

k       Thermal conductivity of material 


  
Dimensionless characteristic length 

1c      Speed of propagation of the longitudinal 

wave 
u  Radial displacement component 
w                     Axial displacement component 

, , ,rr zz rz    
    

Components of stress 

function 

E        Young’s modulus 

        Density 

EC
    

Specific heat at constant strain 

, 
  
Lamé’s constants 

L       Laplace transform 

       Dirac delta function 

( , , )r z                 Cylindrical polar coordinates 

0      Relaxation times 
e       Cubical dilatation 

(.)H  Heaviside unit step function 

http://www.ijsrcseit.com/
http://www.ijsrcseit.com/

