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ABSTRACT 

 

In this paper considering circular trajectory 𝑟 = constant in the plane 𝜃 =
𝜋

2
 in the Reissner-Nordstrom (anti) 

de-Sitter space-time, a relation analogous to a relation between perihelic shift is obtained by using Shirokov's 

technique. Thereby our result supports the conclusion that the cosmological constant term Λ on gravitating 

particle instead of helping the matter to curve the space-time mode, decurves the space-time which means that 

nature of gravitational fields due to the matter and charges matter with cosmological constant Λ may be of 

different type. In our case 𝜃 - vibrations lie further behind 𝑟  or (𝜙)  - vibrations as an effect of positive 

cosmological constant on the periods of vibrating system.  

Keywords: Cosmological constant, R-N field, 𝜃- vibrations, 𝑟 or (𝜙) - vibrations. 

 

I. INTRODUCTION 

 

According to Einstein, all the forms of matter and 

energy are under the influence of gravitation and 

hence the universe filled with matter and energy is 

under the action of the attractive force of gravitation. 

Moreover, the universe is static; therefore it is bound 

to collapse under gravity. So to prevent the collapse, 

Einstein (1917) introduced a cosmological constant Λ 

having the dimensions of space curvature. In 1922, 

Friedmann solved the Einstein's gravitational field 

equations and found a cosmological solution, which 

prevents non-static model of an expanding universe. 

In 1922, Edwin Hubble's observations convinced 

astrophysicists that the universe is not at all static by 

observing the red shift of distant galaxies. Therefore, 

Einstein rejected the term Λ , which does not have a 

direct physical meaning. The term Λgμν  which is 

added to the energy momentum tensor suggests an 

interpretation in terms of constant pressure. This 

pressure would be responsible for avoiding the 

cosmological collapse seen in the case of the non-zero 

density of matter. But then it is necessary to explain 

the existence of such universal pressure by some 

macroscopic phenomenon. 

 

Sakharov, Wheeler, Landau, Pomeranchak and others 

have proposed number of such explanations. In their 

papers, the authors evaluate the constant Λ , as being 

of order of 10−56𝑐𝑚−1 . The value of Λ along with its 

physical interpretation is deduced by supposing that 

the vacuum is endowed with very high elasticity (of 

order Λ−1), which is due to the quantum fluctuations 

of energy in the vacuum. Due to the physically 

plausible reasons Λ  is retained in the modern 

cosmology. 

 

Establishing the criteria for existence and stability of 

circular orbits, Howes (1981) has studied the effect of 

a positive cosmological constant Λ  on the circular 

orbits in the R-N field and Kerr field, with the help 

of geodesic deviation equation. 
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 Taking into account the importance of Λ  in the 

modern cosmology, we have studied the effect of a 

positive cosmological constant Λ , on the periods of 

vibrating system in this paper. In the section 2.2, 

expressions for the frequencies of a vibrating system 

are derived in the R-N field with cosmological 

constant Λ  . In the section 2.3, the periods of 

vibrating system in the Schl'd field with cosmological 

constant Λ on the periods of vibrations is discussed. 

In the section 2.4, conclusions are drawn. 

  

II. FREQUENCIES OF VIBRATIONS 

 

In the GTR, the equation of deviation from the 

geodesic is 

𝑑2𝜉𝑖

𝑑𝑠2  + 2 Γjk
𝑖  𝑢j  

𝑑𝜉𝑘

𝑑𝑠
 +  

𝜕Γjk
𝑖

𝜕𝑥𝑙  𝑢j 𝑢𝑘𝜉𝑙 = 0 , (2.1) 

 

where 𝜉𝑖  is the infinitesimal 4-vector giving the 

deviation from the basic geodesic, 𝑢𝑖 =  
𝑑𝑥𝑖

𝑑𝑠
 

 is the 4-velocity vector tangential to the basic 

geodesic and Γjk
𝑖  are Christoffel symbols defined as 

 Γjk
𝑖 =  

1

2
 𝑔𝑙𝑖  ( 

𝜕𝑔𝑙j

𝜕𝑥𝑘  + 
𝜕𝑔𝑙𝑘

𝜕𝑥j  −  
𝜕𝑔jk

𝜕𝑥𝑙  ) . 

 

Reissner-Nordstrom field with cosmological constant 

Λ  , known as Reissner-Nordstrom (anti) de-Sitter 

space-time is 

𝑑𝑠2  =  − (1 − 
2𝑚

𝑟
 + 

𝑒2

𝑟2
 −  

Λ

3
𝑟2 )

−1

𝑑𝑟2  

−  𝑟2 (𝑑𝜃2 +  𝑠𝑖𝑛2𝜃 𝑑𝜙2)  

 + (1 −  
2𝑚

𝑟
 + 

𝑒2

𝑟2  −  
Λ

3
𝑟2 )  𝑑𝑡2 (2.2) 

where 𝑟 =  𝑥1, 𝜃 =  𝑥2, 𝜙 =  𝑥3, 𝑡 =  𝑥4 . 

For the field (2.2), metric tensors are 

 𝑔11 =  − (1 −  
2𝑚

𝑟
 +  

𝑒2

𝑟2  −  
Λ

3
𝑟2 )

−1

, 𝑔22 =  − 𝑟2 , 

𝑔33 =  − 𝑟2𝑠𝑖𝑛2𝜃 , 

 

 𝑔44 =  (1 − 
2𝑚

𝑟
 +  

𝑒2

𝑟2  −  
Λ

3
𝑟2 ) , 𝑔𝑖j = 0 for 𝑖 ≠ j (2.3) 

 

and the non-vanishing components of the Christoffel 

symbols are 

 Γ11
1 =  − 

1

𝑟
 ( 

𝑚

𝑟
− 

𝑒2

𝑟2  − 
Λ

3
𝑟2 ) (1 −  

2𝑚

𝑟
 +  

𝑒2

𝑟2  −

 
Λ

3
𝑟2 )

−1
, 

 Γ22
1 =  − 𝑟 (1 − 

2𝑚

𝑟
 +  

𝑒2

𝑟2  −  
Λ

3
𝑟2 )

−1

, 

Γ21
2 =  

1

𝑟
 =  Γ31

3  , 

Γ33
1 =  −𝑟 𝑠𝑖𝑛2𝜃 (1 − 

2𝑚

𝑟
 +  

𝑒2

𝑟2  −  
Λ

3
𝑟2 ) , 

Γ41
4 =  

1

𝑟
 ( 

𝑚

𝑟
− 

𝑒2

𝑟2  − 
Λ

3
𝑟2 ) (1 −  

2𝑚

𝑟
 +  

𝑒2

𝑟2  −

 
Λ

3
𝑟2 )

−1
 , 

Γ44
1 =  

1

𝑟
 ( 

𝑚

𝑟
− 

𝑒2

𝑟2  − 
Λ

3
𝑟2 ) (1 −  

2𝑚

𝑟
 +  

𝑒2

𝑟2  −  
Λ

3
𝑟2 ) , 

Γ33
2 =  − sin 𝜃 cos 𝜃 , Γ23

3 =  cot 𝜃 . (2.4) 

We suppose that the basic geodesic is a circular 

trajectory with radius 𝑟 = constant in the plane 𝜃 =
𝜋

2
 

in the field (2.2). Following Howes (1981), if the basic 

geodesic are circular in the axisymmetric stationary 

field, 𝜃-disturbances are independent of 𝑟, 𝜙, and 𝑡-

perturbations. 

Therefore for 𝑖 = 2, equation (2.1) assumes the form 
𝑑2𝜉2

𝑑𝑠2  +  Γjk ,2
2  𝑢j 𝑢𝑘 𝜉2 = 0 (2.5) 

If we suppose that,  

 𝜉2 =  𝜉0
2 𝑒𝑖 Ω s  (2.6) 

( 𝜉0
2 is the amplitude of 𝜃-vibrations) then from (2.5), 

we obtain 

 Ω2 =  Γjk ,2
2  𝑢j 𝑢𝑘 , (2.7) 

where comma in the Christoffel symbol denotes the 

partial differentiation and Ω is the frequency of 𝜃-

vibrations. 

For 𝑖 =  1, 3, 4 , from (2.1), we get 

 
𝑑2𝜉1

𝑑𝑠2  + 2 Γj3
1  𝑢j  

𝑑𝜉3

𝑑𝑠
 +  2 Γj4

1  𝑢j  
𝑑𝜉4

𝑑𝑠
 + Γjk ,𝑙

1  𝑢j 𝑢𝑘𝜉𝑙 =

0, 

 
𝑑2𝜉3

𝑑𝑠2  + 2 Γj1
3  𝑢j  

𝑑𝜉1

𝑑𝑠
= 0 ,  

and 
𝑑2𝜉4

𝑑𝑠2  + 2 Γj1
4  𝑢j  

𝑑𝜉1

𝑑𝑠
= 0 (2.8) 

Further, if we suppose that 

 𝜉j =  𝜉0
j
 𝑒𝑖 𝜔 s , ( j = 1, 3, 4 ) (2.9) 

( 𝜉0
j
 is the amplitude of 𝑟, 𝜙 and 𝑡-vibrations), then 

from (2.8), we get 

 ( Γjk ,1
1  𝑢j 𝑢𝑘 − 𝜔2) 𝜉0

1  + 2 𝑖 𝜔 Γj3
1  𝑢j 𝜉0

3  +

2 𝑖 𝜔 Γj4
1  𝑢j 𝜉0

4 = 0 , 

 2 𝑖 𝜔 Γj1
3  𝑢j 𝜉0

1 − 𝜔2 𝜉0
3  = 0 , 

and 2 𝑖 𝜔 Γj1
4  𝑢j 𝜉0

1  −  𝜔2 𝜉0
4 = 0 (2.10) 

where 𝜔 is the frequency of 𝑟, 𝜙 and 𝑡-vibrations. 

For non-trivial solution of (2.10), we equate the 

determinant of coefficients to zero and obtain 

 𝜔2 =  𝑢j 𝑢𝑘 Γjk ,1
1 −  4 𝑢j 𝑢𝑘  Γj1

3  Γ𝑘3
1  −  4 𝑢j 𝑢𝑘 Γj1

4  Γ𝑘4
1   

or 𝜔2 = ( Γ33 ,1
1 −  4 Γ31

3  Γ33
1  ) ( 𝑢3)2 +  ( Γ44 ,1

1 −

 4 Γ41
4  Γ44

1  ) ( 𝑢4)2 (2.11) 

where all the symbols Γjk
𝑖  and their derivatives are 

evaluated at 𝜃 =  
𝜋

2
 . 
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To determine 𝑢3, consider geodesic equation 

 
𝑑𝑢𝑖

𝑑𝑠
+ Γjk

𝑖  𝑢j 𝑢𝑘 = 0 , ( 𝑖, j, k = 1, 2, 3, 4 ) (2.12) 

in the Einstein's theory of gravitation. 

 

For circular orbits in the equatorial plane from (2.12) 

we find that 

 
𝑑𝑡

𝑑𝜙
=  

𝑢4

𝑢3  =  ( 
−Γ33

1

Γ44
1  )

1

2
 , (2.13) 

which provides the angular velocity of the test 

particle as seen from the infinity. 

Using (2.4) in (2.13), we get 

 ( 𝑢4 )2  =  
𝑟2

( 
𝑚

𝑟
 − 

𝑒2

𝑟2 − 
Λ

3
 𝑟2 )

 ( 𝑢3 )2. (2.14) 

For the circular orbit in the equatorial plane, using 

(2.13) in (2.2), we get 

 ( 𝑢3 )2  =  ( 
𝑚

𝑟3 ) (1 −  
𝑒2

𝑚 𝑟
 −  

Λ

3
 
𝑟3

𝑚
 ) (1 −  

3𝑚

𝑟
 +

 
2 𝑒2

𝑟2  )
−1

 (2.15) 

Therefore expressions for the frequencies of 𝜃 -

vibrations and 𝑟 (or 𝜙)-vibrations in 

(2.7) and (2.11) simplify to 

 Ω2  =  ( 𝑢3 )2  =  ( 
𝑚

𝑟3 ) (1 − 
𝑒2

𝑚 𝑟
 − 

Λ

3
 
𝑟3

𝑚
 ) { 1 −

( 
3𝑚

𝑟
− 

2 𝑒2

𝑟2  ) }
−1

 (2.16) 

& 𝜔2  =  ( 𝑢3 )2  { 1 − 
6𝑚

𝑟
 +  

3 𝑒2

𝑟2 +  
𝑒2

𝑚 𝑟
 +  

𝑒4

𝑚2𝑟2 −

 Λ ( 
4 e2r

m
 +  

4 𝑟3

3 𝑚
−  5 𝑟2 ) } 

 ×  { 1 − ( 
𝑒2

𝑚 𝑟
 +  

Λ

3
 
𝑟3

𝑚
 ) }

−1

 ( 𝑢3 )2 (2.17) 

respectively. 

 

III. PERIODS OF VIBRATIONS 

 

The corresponding period of 𝜃-vibration is 

𝑇𝜃 =  
2𝜋

Ω
=  𝑇0  ( 1 − 

3𝑚

2𝑟
 +  

 𝑒2

2𝑚𝑟
 +  

Λ

6
 
𝑟3

𝑚
 )  + 𝑜(𝜂) (3.1) 

 

and that of 𝑟 (or 𝜙)-vibration is 

𝑇𝑟 (𝑜𝑟 𝑇𝜙) =  𝑇0  ( 1 + 
3𝑚

2𝑟
+  

2 Λ

3

𝑟3

𝑚
 )  + 𝑜(𝜂) (3.2) 

in which 
𝑚

𝑟
,

𝑒

𝑟
 =  𝑜(𝜂) , 𝜂 is small and 𝑇0 = 2𝜋 ( 

𝑟3

𝑚
 )

1

2
 

is the Newtonian period of test particle in the circular 

orbit of radius 𝑟. 

The difference Δ𝑇𝑅𝑁(Λ)  between the periods of 𝜃 -

vibrations and 𝑟 (or 𝜙)-vibrations is 

Δ𝑇𝑅𝑁(Λ) =  𝑇𝜃 − 𝑇𝑟 =  𝑇0  (− 
3𝑚

𝑟
+  

𝑒2

2𝑚𝑟
 − 

Λ

2
 
𝑟3

𝑚
 )  (3.3) 

to the 1
1

2
 order approximation. 

For Λ = 0, (3.3) reduces to 

 Δ𝑇𝑅𝑁 =  𝑇𝜃 − 𝑇𝑟 =  𝑇0  (− 
3𝑚

𝑟
+  

𝑒2

2𝑚𝑟
 ) (3.4) 

Furthermore, for 𝑒 = 0, (3.3) gives 

 Δ𝑇𝑆𝑐ℎ𝑙′𝑑(Λ) =  𝑇0  (− 
3𝑚

𝑟
 −  

Λ

2
 
𝑟3

𝑚
 ) (3.5) 

and for Λ = 0 from (3.5) we can recover the result 

 Δ𝑇𝑆𝑐ℎ𝑙′𝑑 =  𝑇0  (− 
3𝑚

𝑟
 ) (3.6) 

 

which is analogous to the result obtained by Shirokov 

(1973) as a new effect of Einstein's Theory of 

Gravitation. 

IV. CONCLUSION 

 

From (3.3), (3.4), (3.5) and (3.6), we find relation 

between shifts in the periods of 𝜃-vibration and 𝑟 (or 

𝜙 )-vibration in R-N field and Schwarzschild field 

with and without cosmological constant Λ, which is 

analogous to the relation between the perihelic shift 

in R-N field and Schwarzschild field obtained by H.J. 

Treder, H.H.V. Borzeszkowski, A.Van Der Merwe, 

W.Y.Yourgrau. 

 

According to G.D. Rathod and T.M. Karade, the 

relation between perihelic shift 𝛿𝜙𝑅𝑁 < 𝛿𝜙𝑆𝑐ℎ𝑙′𝑑 

shows that charge on the gravitating particle instead 

of helping the matter to curve the space-time more, 

decurves the space-time.  

Also according to Kalpana Pawar and G.D. Rathod, 

the similar relation between the periods of 𝜃 -

vibration and 𝑟  (or 𝜙 )-vibration is obtained which 

shows the effect of charge on gravitating particle is 

analogous to a relation obtained by using Shirokov's 

technique as Δ𝑇𝑅𝑁  < Δ𝑇𝑆𝑐ℎ𝑙′𝑑 . 

 

In our case, from result (3.3), we observe that 𝜃 -

vibrations lie further behind the 𝑟 (or 𝜙)-vibrations 

than the R-N field as an effect of positive 

cosmological constant Λ on the periods of vibrating 

system. 
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