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ABSTRACT 

 

The working plan deals with the preliminary proposal for mathematical modelling of water quality and 

engineering of Pili River stream located in Nagpur District of Maharashtra (India). The total length of Pili River 

within the city is about 16.7 Kilometres. Its width varies from 20-40 meters and depth ranges from 2 to 4.5 

meters. There has been growing concern for maintenance of water quality and ecosystem along Pili River at 

both Legislative and Judiciary levels. Therefore it is need of the day to rejuvenate its water quality and habitat. 

Urbanization had created ecological threat due to immense dumping of domestic wastewater. General 

background information about natural characteristics of the selected stations along the Pili River and main 

source of pollution was made for a better understanding of this problem. The calculation was divided into three 

stages, and the problem was solved using the so-called “combined catch-up / feedback method”. Computer 

memory space is saved as well as calculations speeds up using this method. The complicated hydraulic 

conditions in stream networks make it very difficult to estimate parameters. While the present developed 

model can be used for varied stream networks, it is necessary to estimate the parameters of the model according 

to the local measurements. 

  

 

I. INTRODUCTION 

 

Criteria for Water Pollution Control 

 

There are different kinds of criteria that are currently 

used for water pollution control in India, waste water 

criteria, natural water body criteria, and organic 

waste discharge criteria (Deininger, 1973). If the 

waste water control criteria were worked out 

according to the local economic conditions and the 

technological level, they would be convenient as they 

are very concise (Rinaldi and Soncini, 1979). But they 

fail to link the pollution of waste-water sources with 

the local environmental conditions, i.e., they do not 

take the environmental impacts of pollution into 

account. 

 

The criteria for the quality of natural water bodies 

are based on the requirements of the water users. 

They represent the behalf of the water users, but fail 

to take the real situation into account. The third kind 

of criteria is mainly for organic waste discharge. 

These criteria should take into account the 

distribution of pollution sources, the amount of 

pollution, the available treatment capacity, the self-

purification capacity of the natural water bodies, the 

demands of water users regarding quantity and 
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quality and other factors of an aquatic ecosystem 

(James, 1978). 

 

The variables of the water pollution control problem 

which is a dynamic system control problem, can be 

divided into three classes (Thomani, 1972): 

1. User demands 

⎯ Areal distribution of users  

⎯ Water quality desired by users 

⎯ Water quantity desired by users 

⎯ Future new users, their demands regarding water 

quality and quantity 

⎯ Variations of water demands (quality and 

quantity) in the future 

⎯ Basic and maximum demands (quality and 

quantity) during different periods 

2. Pollution sources  

⎯ Distribution of main sources of pollution 

⎯ Main categories of pollution  

⎯ Amounts of pollution from the various sources  

⎯ Capacity of pollution control and waste-water 

treatment  

⎯ Probable future status of pollution sources 

⎯ Probable amounts and categories of pollution in 

the future 

⎯ Probable control levels and treatment capacity 

3. Self-purification capacity 

⎯ Structure of the channels in a stream network 

⎯ Hydrological and aquatic conditions in streams  

⎯ Present water quality 

⎯ Probable unfavourable hydrological conditions in 

the future 

⎯ Probable water quality under most unfavourable 

hydrological and aquatic conditions 

⎯ Required treatment of waste influents to meet the 

desires of the users under different hydrological 

and aquatic conditions 

⎯ Sewage treatment needed to meet the basic 

requirements of users under most unfavourable 

hydrological and aquatic conditions 

The third class of variables is decisive for defining the 

criteria. It combines the pollution sources with the 

desired water quality and the demands of the water 

users. Once the desired water quality has been 

determined, the self-purification capacity is the key 

factor defining the waste discharge criteria. The 

mathematical model described below is a powerful 

tool for this purpose. 

 

Mathematical Modelling of Self-purification 

Processes in Pili River Stream Networks 

 

The basic principle of founding mathematical models 

on the water quality in tidal stream networks is the 

principle of matter equilibrium. i.e., the variant rare 

of flux of materials on the surface of the system 

equilibrate the variance of the concentration of the 

materials inside the system. 

 

The factors that cause the variance of matter 

concentration inside the system are of physical, 

chemical and biological origin. Physical factors 

include convection, turbulent diffusion (or dispersion 

in one-dimensional problems), settlement (or 

resuspension) of solid particles and dilution by 

mixing. 

 

Chemical reactions which cause the variance of the 

concentration of pollutants include solubility 

equilbria and acidic reaction. Principally, they cause 

a shift in pH value and alkalinity, which affects the 

dissociation of carbonates. 

 

Some people refer to adsorption as a physical reaction; 

others, as a chemical reaction. 

 

The decomposition of organic pollutants by microbe 

is the main cause for polluted rivers to be deprived of 

oxygen. It involves two stages. At the first stage, the 

organic matter is oxidized by the bacteria.  The rate 

of this reaction is assumed to be proportional to the 

concentration of the remaining organic matter, 
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measured in terms of oxygen. This reaction may be 

expressed as Eq. (1). 

 
dL

dt
=  − K1L                                                                 (1) 

where 

L = concentration of organic matter in terms of BOD 

[mg/l] 

t = time 

𝐾1  = coefficient defining the reaction velocity 

[𝑑𝑎𝑦−1] 

 

The second stage is nitrification, i.e., oxidation by 

bacteria of ammonium salts.  The rate of this reaction 

can be expressed as Eq. (2) 

 

 
dLN

dt
=  − KNt                                                               (2) 

Where 

 

 LN  = concentration of nitric organic pollutants in 

terms of nitrification biochemical oxygen demand 

BODN   [mg/l]  

KN  = coefficient defining the velocity of the 

nitrification reaction. 

 

Decomposition of Sedimental Sludge at the Bottom of 

Rivers 

 

The organic matter in the sedimental sludge is 

decomposed by microbes under anaerobic conditions, 

which results in the generation of reductive gases 

such as organic acids, methane, carbon dioxide, 

hydrogen, etc.  These gases are released into the 

water body or into the interface between water and 

sediment and combine with the oxygen contained in 

the water. 

 

Reoxygenation 

 

Water may absorb oxygen from the atmosphere 

when the dissolved oxygen (DO) is below saturation.  

The rate at which oxygen is absorbed, or the rate of 

reaeration, is proportional to the degree of under 

saturation and may be expressed as in Eq. (3) 

 
𝑑𝐷

𝑑𝑡
=  𝐾2 (𝐷2 − 𝐷) =  𝐾2 𝐷𝑑                                       (3) 

where 

 D = concentration of dissolved oxygen [mg/l] 

 𝐷𝑠 = saturation concentration of DO at definite 

temperature. 

 𝐾2 = reaeration coefficient [𝑑𝑎𝑦−1]. 

 t = time  

 𝐷𝑑 = dissolved oxygen deficit. 

The photosynthesis of aquatic plants is another 

source of DO in water bodies.  The rate of oxygen 

generation can be obtained from Eq. (4) and Eq. (5).  

 P (t) =  Pm sin  
(t− tsr)

tss − tsr
          tsr < t <  tss                (4) 

 P (t) = 0                             tsr > t >  tss                  (5)          

where 

 Pm = maximum rate of oxygen generation of aquatic 

plants during photosynthesis. 

 tsr = time of sunrise. 

 tss = time of sunset. 

Another factor affecting the material equilibrium is 

settling / resuspension. JANSA and AKERLINDH 

have shown that a term for deoxygenation due to 

BOD of sediment may be added to the model 

equations : 

 
𝑑𝐿𝑏

𝑑𝑡
=  𝐾3 . 𝐿𝑠 . 𝑒−𝐾3𝑡                                                  (6) 

where 

 Lb  = concentration of organic matter in settled 

sludge in terms of BOD at time t 

 Ls = total BOD of settling sludge. 

 K3 = coefficient of sedimentation. 

Factors affecting the sedimentation rate are flow 

velocity U, depth of water body d and particle 

diameter  : 

 K3 = f (u, d,) (7) 

For elaborating a mathematical model of stationary 

streams, it is sufficient to take these factors into 

account. But in a Pili River stream network it is 
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necessary to include the tidal action and the 

particular flow conditions as these two factors govern 

the distribution and concentration of pollutants.  

Most coefficients are not constant.  In a Pili River 

stream network, flows vary in direction and velocity, 

but not in a periodic manner as is the case for single 

estuaries or single tidal streams.  In contrast to 

estuaries, there is no stratification and no crosswise 

circulating currents. Waters running in stream 

networks move forward, backward and around, but 

do not follow definite rules. At the nodes of the 

stream network, water discharge takes place 

depending on the geometric characteristics of the 

channels, the structure of the stream beds, as well as 

the water levels in the upstream and downstream 

reaches.  There is no constant coefficient for the same 

amount of discharge. Flow velocities vary 

considerably, from high velocities in one direction to 

high velocities in the other direction. The uneven 

distribution of velocities over the cross-sections of 

the streams plays an important role in the 

distribution of pollutants. 

 

Therefore, the unsteadiness of the concentration field, 

the transportation caused by variable flow velocities, 

dispersion, and the regulative function of the nodes 

on the assignment of water discharges in stream 

networks need to be taken into account. Dispersion 

may be expressed as Eq. (8). 

 

Ix  =  −  𝐸𝑥  
𝑑2𝐿

𝑑𝑥2 (8) 

where 

 Ex = coefficient of dispersion  [L−2] 

 L = length. 

 x = longitudinal distance. 

The negative sign means that dispersion is directed towards the lower concentration. 

Advection may be expressed as Eq. (9) 

 Ioa = U 
dL

dx
 (9) 

Based on the above assumptions, the mathematical model of the water quality in tidal stream networks may be 

expressed as the following equations : 

When     i       i,1  

 
aH

at
+ 

1

B
  

aQ

ax
= 0 (10) 

  

 
aU

at
+  U

aU

ax
+ g

aH

ax
+ g 

U  |U |

c2   d
= 0 (11) 

 

 
a(AL)

at
+

a(AUL)

ax
=  

𝑎

𝑎𝑥
  (𝐴. 𝐸𝑥  

𝐴𝐿

𝑎𝑥
) −  ∑   𝐾𝑖𝑜

𝑃0
𝑖𝑜=1 . 𝐴. 𝐿. +𝑆  (12)  

When     i    =   i,1  

 ∑ Qj1
, i1

P1
i=1 = 0 (13) 

  

 Hj1,1
=  Hj1,2

= ⋯ =  Hj1,i1
= ⋯ =  Hj1,P1

  (14) 

 

 
aL

at
 . 𝑉𝑗1

=  ∆ 𝐹𝑗1
  (15) 
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Initial conditions,        j = 0 

 H  (i,0)  =  h (i) (16) 

 U  (i,0)  =  u (i) (17) 

 L  (i,0)  =  l (i) (18) 

 

 

Marginal conditions,     i = f 

 H  (i,j)  =  h (f,j) (19) 

 L  (i,j)  =  l (f,j) (20) 

 

The equations (10) to (20) constitute the mathematical model of the water quality in tidal stream networks. For 

water quality simulation using the concentration of dissolved oxygen as indicator, the modeling equations 

should be hydraulic coupled equations and BOD-DO coupled equations.  

 

 

 
aH

at
+ 

1

B
  

aQ

ax
= 0 (21) 

  

 
aU

at
+  U

aU

ax
+ g

aH

ax
+ g 

U  |U |

e2   d
= 0 (22) 

 

 
a(A.L)

at
+

a(AUL)

ax
=  

a

ax
  (A. Ex .

aL

ax
) − ∑   Kio

P0
io=1 . A. L. +S  (23)  

 
a(A.D)

at
+

a(AUD)

ax
 =  

a

ax
 (A. Ex .

aD

ax
) +  𝐾2 . A. (𝐷𝑠 − 𝐷)                                            i ≠  i, 1 

                              − ∑   Kio
P0
io=1 . A. L. +S1 (24) 

  

 ∑ Qj1
, i1

P1
i1=1 = 0 (25) 

  

 Hj1,1
=  Hj1,2

= ⋯ =  Hj1,i1
= ⋯ =  Hj1,P1

         i =  i, 1 (26) 

 

 
aL

at
 . 𝑉𝑗1

=  ∆ 𝐹𝑗1
  (27) 

 
a0

at
 . 𝑉𝑗1

=  ∆ 𝐷𝑗1
  (28) 

Marginal conditions,        i = f 

 H  (i,j)  =  h 1 (f ,j) (29) 

 L  (i,j)  =  l  1 (f ,j) (30) 

 D  (i,j)  = d  1 (f ,j) (31) 

Initial conditions,     j = 0 

 H  (i,0)  =  h (i) (32) 

 U  (i,0)  =  u (i) (33) 

 L  (i,0)  =  l (i) (34) 

 D  (i,0)  =  d0 (i) (35) 
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where 

 Eq. (21) = so-called continuity equation 

 Eq. (22) = momentum equation 

 Eq. (23) = equation of pollution conservation 

 Eq. (24) = equation of DO conservation 

 B = average width of cross sections, for narrow and wide channels it approximately equals 

the width of the water surface [m] 

 A = area of the cross section through which waters flow [𝑚2] 

 Q = water discharge [𝑚3/𝑒] 

 c = coefficient expressing the roughness of the stream bed. Chezy coefficient 

 d = hydraulic radius; for wide and narrow rivers it usually approximates the average 

depth of the water in the channels 

 Ki0 = coefficients defining the decay velocities of pollutants. 

   For organic pollutants, these coefficients define the oxidation velocity (𝐾1) , 

settling/resuspension velocity (𝐾3), etc. 

 s = other sources or sinks, including branch influents, etc. 

 pp = amount of coefficients 

 io = ordinal number 

 i1 = ordinal numbers of cross sections located in the areas of stream network nodes 

 j1 = ordinal numbers of the nodes of a stream network 

 Vj1 = water volume at node j1 of the stream network 

 ∆Fj1 = net flux of pollutants at node j1 

 h 1(f,j) = water levels at marginal sections 

 l 1(f,j) = concentration of pollutants in marginal sections 

 h(i) = original water level of a section 

 u(i) = original flow velocity in a section 

 l(i) = original concentration of pollutants in a section 

 f = ordinal numbers of marginal sections 

 i = ordinal numbers of segments of the stream network 

 j = ordinal numbers of time steps 

 m = total number of time steps 

 n = total number of segments of the stream network 

 d1 (f,j) = concentration of dissolved oxygen in marginal sections 

 d0 (i) = original concentration of a section 

 Dj1 = net flux of dissolved oxygen at node j1 

 S1 = other source or sink of dissolved oxygen 

 K2 = coefficient defining the rate of reaeration of waters in the stream network 

 

For the above model, it is assumed that the carbonaceous oxygen demand resulting from organic matter 

degradation is the main factor influencing the dissolved-oxygen balance. 

 

If other factors exert a secondary oxygen demand, such as nitrifying bacteria by the oxidation of ammonia, 

appropriate equation, which have the same form as Eq. (23) need to be added and appropriate terms need to be 

added to the equation defining the equilibrium of dissolved oxygen. 
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Numerical Solution of the Mathematical Model 

It we have all coefficients we need and we know the initial and marginal conditions, the equations of the 

mathematical model can be solved.  But it is difficult to find an analytical solution. We need a proper numerical 

method. 

Normally, in natural waters, the flow field is independent of the concentration field unless the concentration of 

pollutants is so high that it causes marked variations of water density and water viscosity. 

The concentration field, however, is not independent of the flow field. Therefore, it is possible to solve the 

flow first and then the concentration field. 

In the same way, the concentration field of organic pollution is independent of that of dissolved oxygen as long 

as there is dissolved oxygen in the water. 

Therefore, we can use the recurrence relations of equations to simplify the calculation. That means we can 

calculate the flow field first, then, using the results of the flow field as a known condition, we can solve the 

concentration field of organic pollution and then the concentration field of dissolved oxygen. 

In order to speed up the calculation and to save computer storage capacity, the following disposals are adopted: 

For each time sequence, the equations are solved in combination, while for each time span, the equations are 

solved by a recurrence method. The processes of the calculation are provided in detail below. 

The first step is the calculation of the flow field. The relative equations are the following : 

 
aH

at
+ 

1

B
  

aQ

ax
= 0 (36) 

                                                             i ≠  i, 1 

 
aU

at
+  U

aU

ax
+ g

aH

ax
+ g 

U  |U |

c2   d
= 0 (37) 

 P1 
 

  Qj1,i1  =  0 (38) 

 i1=1                                                     i =  i, 1  

 Hj1,1
=  Hj1,2

= ⋯ =  Hj1,i1
= ⋯ =  Hj1,P1

    (39) 

Marginal conditions,         

 H  (i,j)  =  h1 (i,j)   i = f (40) 

Initial conditions,      

 H  (i,0)  =  h (i)      j = 0 (41) 

 U  (i,0)  =  u (i)      j = 0 (42) 

Using finite differences of a four-point implicit pattern, we can transform the differential equations into finite 

difference equations if the time spans are all of the same magnitude and the space spans are different. The 

pattern of differences is shown in Fig. 1. 

For the variable  , we have the following formulas : 

 θ ̅ =  
1

4
(θi−1

j−1
+ θi

j−1
+  θi−1

j
+  θi

j
) (43) 

 
aθ

at
=  

1

2𝑡
 (θi−1

j
+ θi

j
−  θi−1

j−1
− θi

j−1
) (44) 
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aθ

ax
=

1

2∆x1
 (− θi−1

j
+  θi

j
−  θi−1

j−1
+  θi

j−1
) (45) 

where 

  = average value  of the values of four nodes of a network. 

Substituting finite difference formulas for the differential terms, we obtain, for stream segment no. i , the 

following difference equations.  

 ∅1i−1 Hj−1
j

+  ∅2i−1 Ui−1
j

 +  ∅3i−1 Hi
j
 +  ∅4i−1 U𝑖

j
=  ∅5i−1  (46) 

 1i  Hi−1
j

+  2i  Ui−1
j

 +  3i  Hi
j
 + 4i U𝑖

j
=  5i  (47) 

Making identical alterations to these two equations, we can obtain equations of the following type.  

 Hi−1
j

+ ai−1 Ui−1
j

 +  bi−1 Hi
j

=  Ri−1  (48) 

 Ui−1
j

+  ai Hi
j

+ bi Ui
j
             =  Ri  (49) 

 

 

For each stream segment not located in the node regions, we have coupled equations similarly to the above, 

where a, b, ∅,  are factors.  

For the segments located in the node area, we have equations like Eq. (38) and Eq. (39). Adding the equations 

of the marginal and initial conditions, we obtain closed and solvable equations. 

For the total stream network, the equations are of the following type : 

 A . x = R  (50) 

Take a stream network of the following type as an example. 

We can see that the coefficient matrix is of the tridiagonal type with some coefficients being discrete. 

Equations of this type can be solved with the “combined catch-up/feedback method”. This method includes 

two steps.  The first step is the “catch-up process”. Using the boundary conditions, and beginning with the first 

equation, one equation after the other is transformed together with the last equation by means of identical 

alternation to eliminate a variable. The second step is the “feedback process”, conducted in opposite direction. 

Feeding the latest boundary condition into the last equation, we obtain the value of the last equation but one, 

we obtain the value of the last variables but one. In this way, one by one, we obtain the values of all variables. 

When making a catch-up step with the equations related to the nodes of the stream network, we must make an 

identical alternation with the equation having a discrete coefficient in order to bring the discrete co-efficient a 

step closer to the tridiagonal. 

The second step of solving the equations of the model is the calculation of the concentration field of 

the organic pollutants. 

The relevant equations are :  

 
a(AL)

at
+

a(AUL)

ax
=  

a

ax
  (A. Ex .

aL

ax
) −  ∑   K1o

P0
io=1 . A. L. +S          i ≠ i1 (51) 

 
aL

at
 . 𝑉𝑗1 =  ∆𝐹𝑗1                                                                           i = i1 (52) 

Marginal conditions,         

 L  (i,j)  = 1 (f, j)                                                                            i = f (53) 

Initial conditions,      
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 L  (i,0)  =  l (i)                                                                              j = 0 (54) 

 

The requisite hydraulic conditions and the relevant data on the structure of the channels are provided by the 

computation above. 

Using finite differences of the four-point implicit pattern, the differential equation can be transformed into a 

finite difference equation. Fig. 4 shows the difference pattern. The time and space spans are the same as used 

for the calculation of the flow field. 

For variable  , we have the following formulae : 

 
a

at
=  (θi

j
−  θi

j
) /∆ 𝑡 (55) 

 
a

ax
=  ∆x1+1   

∆xi

(∆x1 + ∆xi+1 )
θi+1

j
+  

∆xi+1 − ∆xi 

∆x1 • ∆xi+1
  θi

j
−  

∆xi+1

∆xi (∆xi + ∆xi+1 )
θi−1

j
 (56) 

 
a2

ax2 =  
4 (θi+1

j
−2 θi

j
 + θi−1

j
)

(∆x1 + ∆xi+1 )2  (57) 

Using these formulas to replace the partial derivative terms of the differential equation and to put it in order, 

we obtain difference equations of the following type : 

 Li−1 +  ai
′ Li + bi

′  Li+1 =  Ri
′   (58) 

where  ai
′  , bi

′  and  Ri
′    are coefficients. 

For each two segments, we have an equation of this type. The segments between two cross sections that are 

related to the nodes of the stream network are the so-called false segments. For these segments we use the 

equilibrium equation to connect the flows in the relevant channels. With the marginal conditions added, the 

equations are closed and can be solved. The coefficient matrix of the equations is of the tridiagonal type, the 

coefficients of the equations for the false segments being discrete. These equations can be solved with the 

combined catch-up/feedback method mentioned above. 

Here, the letter L could be the concentration of BOD, of NH3-N, NO3 –N,  NO2-N or any other oxygen 

consuming material. Taking into account several kinds of factors of the biochemical oxygen demand, we obtain 

several groups of equations of the same type as discussed above. 

The third step deals with the calculation of the concentration of dissolved oxygen. The relevant equations are : 

 

 
a(A.D)

at
+

a(A.U.D)

ax
 =  

a

ax
 (A. Ex .

aD

ax
) +  𝐾2 . A. (𝐷𝑠 − 𝐷)            

                              − ∑   Kio
P0
io=1 . A. L. +S1                           i ≠  i, 1              (59) 

  

 
aD

at
 . Vj1 =  ∆ Dj1                                                                i =  i, 1              (60) 

Marginal conditions,         

 D  (i,j)  = d1 (f ,j)                          i = f (61) 

Initial conditions,      

 D  (i,0)  =  d0 (i)                           j = 0 (62) 

 

These equations have the same structure as those for 

organic pollutants and can be solved in the same way. 

Having completed all the three steps, we can turn to 

the calculation of the next time stage and repeat the 

three steps of calculation. In this way, steps by step, 
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we obtain the results of all variables at different times 

and places. 

 

II. DISCUSSION AND CONCLUSION 

 

Mathematical models of water quality are powerful 

tools to study pollution processes in rivers, especially 

in tidal stream networks (Fu, 1982). It is impossible to 

assess the present and future conditions of the water 

quality in a tidal stream network without 

mathematical models. By using the models, we can 

provide planers, managers and decision-makers with 

sufficient and concrete information, especially 

information for hypothetical cases. However, models 

cannot do the work of planners, managers and 

decision-makers. 

 

The mathematical model of water quality in tidal 

stream networks has universal significance and can 

be used for various tidal stream networks (Rich, 

1981). When applying the model to a given stream 

network, it is necessary to incorporate the cross 

sections of this system, to evaluate the coefficients 

and to calibrate the model using the information 

available on the system under study. 

 

The information obtained by measurements and 

monitoring is most important in developing a 

mathematical model of water quality (Zhang, 1982). 

Since there are many channels in a stream network, a 

sufficient number of measuring points is needed to 

obtain reliable information. Measurements should be 

made, and samples taken, continuously and 

simultaneously at all points. It is not easy to obtain 

sufficient information. But if the model is well 

founded, it is considerably easier to study and 

manage the water resources in stream networks. 

Measurements should always be taken over two full 

tides in order to avoid being hoodwinked by false 

mathematical phenomena in the early period of 

calculation (Zhan, 1981).  
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