

Survey on Automatic Collision Alert System for Vehicle Safety on Road

Deepak Kumar Yadav¹, Komal R², Rachana Kumari³, Prof. Amruta Chitari⁴

^{1,2,3} Student, Department of Computer Engineering, Dr. D. Y. Patil School of Engineering, Lohegoan, Savitribai Phule Pune University, Pune, Maharashtra, India

⁴Professor, Department of Computer Engineering, Dr. D. Y. Patil School of Engineering, Lohegoan, Savitribai Phule Pune University, Pune, Maharashtra, India

ABSTRACT

There are various reasons due to which accident rates are increasing, some of the reasons are the negligence of the driver, fog, smog, smoke, etc. because of which people are losing their life. In this project, we are going to take note of how we can reduce these accidents by other means which will help to detect the problem in the first place.so, in this project we are basically, calculating or measuring the safety distance between the driving car and front object to avoid the collision.

Keywords : Electromechanical, Automated Braking System, Sensors, Notification, Alert.

I. INTRODUCTION

Automated collision alert system works to avoid accidents or damage whenever the sensor detects any obstacle the car automatically adjust accordingly, for instance, it calculates the required speed, proper distance to be maintained between vehicles. So according to the speed of a car, the system will calculate the safety distance. If the obstacle is not in the safety distance then the system will generate alert to apply the brake but in case if the driver doesn't respond then the system will automatically apply the brake.so, in this way it helps to prevent collisions that lead to the safety of vehicles on road.

Figure 1 : Collision Detection system with automatic braking example.

II. LITERATURE SURVEY

Here we discussed the literature review of existing techniques:

Sehun Kim, Sunghyun Lee, Inchan Yoon, Mija Yoon and Do-Hyeun Kim[1], they proposed a vehicle warning system that predicts the collision and warns the driver in advance by generating alarms. The system is implemented using sensors and GPS system. The vehicle collision warning system proceeds with two steps. First step is the AIS which obtains the location data of vehicle. The second step is the collision warning using the vehicle warning algorithm. In this system, suing GPS each vehicle's data is send to AIS and depending upon the vehicle's speed and direction the system generates the waring.

N.Sreeraman, G.Sathyapriya, G.Ganesan, G.Ajithkumar, S.Praveen Kumar [2].They proposed a methodology for automatic control of the braking system to deter any accident. In this technology, they used Arduino, Relays, IR transmitter and IR receiver for the productive function of the braking control system. This complete system can be accommodated on to the dashboard of the vehicle and effectively used for automatic control of the braking system.

Vipul Shinde, Rohan Thorat, Trupti Agarkar [3]. The paper depicts an automatic car system in which the vehicle keep the distance and applies break using fuzzy logic. The one more parameter if the detects object in a certain distance it change its lane and overtakes the object.

A.joseph Godfrey, V.Sankaranarayana [4], They proposed an electric braking system for DC motordriven electric vehicles based on stopping time and energy regeneration. The system is designed by combining different regenerative methods and plugging.

Bhaskara. P, Eriki Ananada. K, Venkataramana [5], The Arduino board performance is taken out to analyze the distance at which the vehicle comes to a stationary position. The existence of the set up is tested in order to assist the driver during overstress ailments like long drives and long obligation hours.

Anil Kumar Gupta, Gaurav Wable, Tarun Batra [6], they proposed a system for timely detection of other vahicles in the surrounding using GPS based system, which actively and continuously vehicle's location coordinates to the eye in the sky server, which processes the data of the such vehicles and predicts the collision and sends the alert before collision so that the driver can take any action to avoid the accident.

J. V. Sai Ram, K.M.S.V. Manikanta, G. Pavanth, B.Jagadeep, Dr. B. Raghu Kumar, they proposed a system which uses Ultrasonic setup in the front of the vehicle to detect the obstacle. It any obstacle is detected the signal is send to Aurduino Nano from that bases upon distance of object it actuates the buzzer or brakes.

The overall finding of the above discussion is given below as Table-1

Sr.	Paper Name	Author	Method Proposed	Limitations
No.				
1.	The Vehicle Collision	Sehun kim,	GPS to collect	Collison is detected within
	Warning System based	Sunghyun Lee,	vehicle data on AIS	30meters.
	on GPS	Inchan Yoon, Mija	and depending upon	Automatic braking system
		Yoon and Do-	vehicle's	is not there.
		Hyeun Kim	speed ,direction and	
			distance waring is	
			generated.	

2.	Performance Study On	N.Sreeraman,	The distance of any	Performance Study On IR
2.	IR Sensor For	G.Sathyapriya,	obstacle, a stationary	Sensor For Automobile
	Automobile Braking	G.Ganesan,	or a moving vehicle	Braking System.
	System	G.Ajithkumar,	or a road block is	Diaking System.
	System	S.Praveen Kumar	sensed by an infrared	
		5.Flaveen Kuillai	sensor and it is	
			provided to the	
			microcontroller.	
3.	Automatic Con Dailing	Minuel Chine Le		TT1
3.	Automatic Car Driving	Vipul Shinde,	Using fuzzy logic	The system does not have
	System Using Fuzzy	Rohan Thorat,	vehicle is makes	any communication
	Logic	Trupti Agarkar	their own choice on	information such as alerts
			which certain	and warnings. Therefore,
			actions are taken by	the system does not have
			sensor data also	any vehicle
			implement two	communication.
			parameters viz.,	
			overtaking and	
			automatic braking	
			system.	
4.	A New Electric Braking	A.joseph Godfrey,	The crucial	The consequences of
	System With Energy	V.Sankaranarayanan	parameters scilicet	regenerative braking drop
	Regeneration For a		stopping time and	with the speed a vehicle is
	BLDC Motor-Driven		energy regeneration	travelling. At low speeds,
	Electric Vehicle.		are considered to	friction brakes are
			complete this	expected to bring most
			scheme. As an initial	vehicles to a complete stop.
			phase, their actions	That means there is
			are studied using	however energy being lost.
			both numerical	
			simulation and	
			experiments.	
5.	Arduino Based	Bhaskara. P, Eriki	Brakes are connected	The setup ceases to
	Automated Braking	Ananada. K,	to the wheels of the	function at turns, also if the
	Control System To	Venkataramana	vehicle. Before	object is coming in the
	Enhance The Safety		applying the brake,	straight direction but still is
	At Low Light And		speeding up is	out of range then the
	Long Stressed Drive		released to stop the	system will fail.
	Condition.		fuel allowance	
			framework in this	
			way motor builds up	
			no more energy to	
			no more energy to	

			run the vehicle, and	
			after that clutch is	
			withdrawn which	
			subordinate the	
			motor from the	
			transmission frame	
			work.	
6.	Collision Detection	Anil Kumar Gupta,	The location of the	The system is not suitable
	System for vehicles in	Garurav Wable,	all the vehicles is	for poor connectivity area.
	Hilly and Dense Fog	Tarun Batra	send to server using	the processing time is quite
	Affected Area to		GPS, there processing	high.
	Generate Collision		is done, and if any	
	Alerts.		vehicle comes nearer	
			then the safe	
			distance, then alert is	
			generated.	
7.	Automatic Braking	J. V. Sai Ram,	Ultrasonic Sensor	Aurduino Nano less I/O
	System Using Ultrasonic	K.M.S.V.	detects the obstacle	pins so it can be used for
	Sensor.	Manikanta, G.	and sends signal to	limited number of things.
		Pavanth, B.Jagadeep	the Aurduino Nano	
			for processing safe	
			distance and	
			accordingly buzzer	
			and brake id applied.	

TAXONOMY CHART

Table 2 : Taxonomy Chart

Factors	Processing on Server	Automatic Brake	Alerts Generation	Feasibility in any weather
The Vehicle Collision Warning System based on GPS				
Performance Study On IR Sensor For Automobile Braking System				

Automatic Car Driving System Using Fuzzy Logic		
A New Electric Braking System With Energy Regeneration For a BLDC Motor- Driven Electric Vehicle.		
Arduino Based Automated Braking Control System To Enhance The Safety At Low Light And Long Stressed Drive Condition.		
Automatic Braking System Using Ultrasonic Sensor.		
Collision Detection System for vehicles in Hilly and Dense Fog Affected Area to Generate Collision Alerts.		

III. CONCLUSION

The following conclusions that can be made on automatic braking system using ultrasonic sensor are: 1. Arduino UNO microcontroller is user friendly and helps learners. Mechanical engineers in providing better coding/ programming for automatic braking. 2. Ultrasonic sensor is inexpensive compared to other sensors and provides better sensing span within 100m. 3.Automatic braking system take decision based on microcontroller inputs and begins the braking automatically and regulate the vehicle in advance to any harmful accidents situations. Thus, implementing this System can reduce the close impact likely accidents. Also, it can be concluded that the present project work is no more exhaustive as it can be further accomplished by using different range sensors and actuating mechanism. Present paper work becomes a prepared reckoner for engineers in future project growth.

IV.ACKNOWLEDGEMENT

It gives us a great pleasure in presenting the paper on "Survey on Automatic Collision Alert System for Vehicle safety on Road". We would like to take this opportunity to thank Dr. Pankaj Agarkar, Head of Computer Engineering Department, DYPSOE, Pune for giving us all the help and support. We need during course of the Paper writing work. We are really grateful to him. Our special thanks to Dr. M. Z. Shaikh, Director DYPTC who motivated us and created a healthy environment for us to learn in the best possible way. We also thank all the staff members of our college for their support and guidance.

V. REFERENCES

- Prof. Sehun Kim, Sunghyun Lee, Inchan Yoon, Miji Yoon, Do-Hyeun Kim "The Vehicle Collision Warning System based on GPS", 2011 First ACIS/JNU International Conference on Computers, Networks, Systems, and Industrial Engineering, July 2011.
- [2]. N.Sreeraman, G.Sathyapriya, G.Ganesan, G.Ajithkumar, S.Praveen Kumar "Performance Study On IR Sensor For Automobile Braking System", Volume:05 Issue:03|Mar-2018.
- [3]. Vipul Shinde, Rohan Thorat, Trupti Agarkar, "Automatic Car Driving System Using Fuzzy", Volume:05|Issue:03|Mar-2018.
- [4]. A.joseph Godfrey, V.Sankaranarayanan, "A New Electric Braking System With Energy Regeneration For a BLDC Motor-Driven

Electric Vehicle", Volume:21 | Issue:04 | August-2018.

- [5]. Bhaskara. P, Eriki Ananada. K, Venkataramana, "Arduino Based Automated Braking Control System To Enhance The Safety At Low Light And Long Stressed Drive Condition", Volume:04 |Issue:2|2018.
- [6]. Anil Kumar Gupta, Garurav Wable, Tarun Batra, "Collision Detection System for vehicles in Hilly and Dense Fog Affected Area to Generate Collision Alerts", 2014 Interational conference on Issues and Challenges in Intelligent Computing Technologues(ICICT), August 2014.
- [7]. J. V. Sai Ram, K.M.S.V. Manikanta, G. Pavanth, B.Jagadeep, "Automatic Braking System Using Ultrasonic Sensor", Volume 3, Issue 4, April 2017.

Cite this article as :

Deepak Kumar Yadav, Komal R, Rachana Kumari, Prof. Amruta Chitari, "Survey on Automatic Collision Alert System for Vehicle Safety on Road", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 4 Issue 8, pp. 45-50, September-October 2019. Journal URL : http://ijsrcseit.com/CSEIT194812