
CSEIT19491101 | Published - 21 Dec 2019 | November-December-2019 [(4) 9 : 417-421]

International Conference on Innovative Research in Engineering, Management and Sciences

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 4 | Issue 9 | ISSN : 2456-3307

417

Analyzing GraphQL and implementing the framework on
Android devices

S Sivan Chakravarthy*1

*1Department of Computer Science and Engineering Bangalore, India

sivan.sundar@gmail.com1

ABSTRACT

This paper is a highlights how mobile devices can query data and information efficiently by using GraphQL.

This paper reviews the the Graph QL framework and discusses its role in making intelligent requests possible.

To improve data efficiency and reduce device overhead, we will be using GraphQL in relaying queries to

APIs.

Keywords : GraphQL, Querying Language, Android, Mobile devices.

I. INTRODUCTION

Data Query Languages (DQL’s) or Query

Languages (QL’s) are used to create queries to

communicate with information systems and

databases. QL’s make it easier to handle data from

server sources which hosts huge chunks of data.

They were primarily made to handle creating,

deleting, accessing, and modifying data with

databases. There are multiple QL’s like Contextual

Query Language (CQL), Java Query Language (JQL)

etc but the one query language in our day to day

services that we are accustomed to is the REST QL’s

or simply REST APIs. Recently it was convoluted

that REST API’s still faced a couple of problems with

respect to making multiple routes to endpoints and

retrieving a bunch of data which is not going to be of

full purpose.

Although the REST architecture was phenomenal, it

had its own shortcomings which weren’t addressed.

When it comes to REST, everything component is

handled as a resource. Using HTTP allows you to

operations like GET, POST, PUT and DELETE but

the problem was the multiple rounds it was making

at multiple endpoints to retrieve data. Another

common problem that REST possessed was over

fetching and under fetching of data. For every

request initiated, we would retrieve a huge dataset

from which we need to extract the data that we need.

This indeed posed a huge load on the network

receptors and the devices too. For example, if a blog

post consisted of properties like : id, user, title and

body, using a REST request we would end up

downloading the entire set and there would be no

way to limit the response to contain only certain

specific fields like title and user.

II. GRAPHQL

In 2015, Facebook decided to come up with a new

query language to solve the existing problem that the

REST API’s faced. It ended up creating a dent in the

online space when it came to consuming data. Graph

Query Language or GraphQL was born. GraphQL

was an excitingly new prospect to help imagine data

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 418

in a new way. The major shortcomings that REST

posed were eliminated with this new venture.

Although it was established in 2015, it gained

prominence in no time.

GraphQL is not wired in to any specific storage

structure or database and instead is backed by your

data and code. A GraphQL service is created by

defining fields and types and then providing

functions for each.

Once a GraphQL service is set up, (usually on a

web service) it can be sent GraphQL queries to verify

and execute. The query is first checked to ensure it

refers to the defined fields and types and then the

functions are executed to produce the required result.

2.1 - SCHEMAS AND TYPES

We will now look into the schemas and types

associated with GraphQL and how we can create

leverage out of them. As GraphQL can be used by

any programming language or framework, we will

look into the concepts rather than the

implementation-specific details.

GraphQL services can be written in any language.

As we can’t stick to one specific language to talk

about or handle GraphQL like lets say Python, Rails

or Javascript, we define our own language called the

GraphQL Schema language. It helps us to

communicate in a language-agnostic way. The

GraphQL schema consists of a basic component

called object-types which represents the kind of

object that can be retrieved from your service. Let us

consider this piece of code :

 Fig 2.1 - Graph QL Type

Character is a GraphQL object type with some

fields. The appearsIn and name are fields on the

character type. String! is a non-nullable built-in

scalar types which holds in strings and Episodes! is a

non-nullable type which holds in an array of Episode

objects.

2.2 - INTERFACES

GraphQL supports interfaces. It is nothing but an

abstract type which includes certain fields that a type

requires to implement an interface. Let us consider

this interface :

Fig 2.2 (a) - An Interface.

Here, the type that implements this interface

should needs to have the same fields with the same

return types and arguments.

Fig 2.2 (b) - Implementing an Interface

Both of these types have fields from Character

interface, but also contain extra fields that are

pertinent only to that specific Character type. When

we want to return a specific set of objects, interfaces

are useful.

III. ADVANTAGES OF GRAPHQL

One of the biggest advantages of GraphQL is that it is

client-driven which means that you get what you

want. We get to define the type of response and

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 419

therefore the client on server has more control

power. We can end up doing multiple calls which

places a huge burden on both the device and server.

Instead of bouncing off multiple endpoints, we can

hit one endpoint and get what we want.

IV. SETTING GRAPHQL ON ANDROID

To get started on Android, we need to have a bunch

of libraries and dependencies. At first, we are going

to configure apollo-graphql which is a caching

library for graphql written in Java with the following

lines of code being added to the project.gradle file.

Fig 4.0.1 - Dependencies

There are a bunch of other dependencies to be

added like

● implementation

“com.apollographql.apollo:apollo-runtime:0.3.2'

● implementation

"com.apollographql.apollo:apollo-android-

support:0.3.2"

Additional plugins need to be added to

build.gradle file like

● apply plugin: 'com.android.application'

● apply plugin: 'kotlin-android'

● apply plugin: 'kotlin-android-extensions'

● apply plugin: 'com.apollographql.android'

Now we need to be able to generate code-gen files

which will allow us to take the schemas of the

GraphQL queries and convert them into Java classes.

Apollo-codegen is an amazing library to get this job

done. For this, we need to install apollo-codegen via

npm and then create a directory called “graphql”

under the /src/main directory. This will host the

schema file with a .json extension which will contain

the responses of the introspection queries.

Now since we have all the dependencies set up, it

is time to wire in. To demonstrate an example in this

paper, we will be considering GraphQL Api of

Github. We are going to use OkHTTP as our

networking client and add headers and receptors to it

if needed. This client also supports a level 3 caching

so we have this ar our disposal too. Now we need to

create an apollo-client object and attach our

OkHTTP networking object which is going to

initiate requests. Make sure you specify your base url

of the api too. A FeedQuery object will be able to set

parameters like limit and type to our GraphQL

queries. The getters and setters are automatically

generated by apollo. The .graphQL file will contain

our queries so let us make sure we have them well

defined.

Fig 4.0.2 - GraphQL queries in the .graphQL file

Now we must create an Apollo call, which takes in

the data of the FeedQuery object as its type. Also we

need to set the query of this to the feed-query object

that we initially created. GraphQL supports both

RxJava and callback methods. As far as the callback

method is concerned we will call the enqueue

method on the callback ApolloCall object and the

enqueue method executes asynchronously which

does not affect the main thread. We then obtain a

nonnull response object from which we can obtain

the raw data.

V. VALIDATION

The type system tells us if a query is valid or not.

This helps the developers by keeping them informed

about the validity of the query and if runtime checks

can be performed on it or not. A test file can also be

run on the queries to check the correctness of them.

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 420

Fig 5.0.1 - A valid query

VI. EXECUTION

After validating, the query is executed by a

GraphQL server which returns a result which

resembles the requested query in a JSON structure.

The GraphQL query cannot execute without a type

system. Each query of a GraphQL function can be

described as a function or a method. Each field is

backed by a resolver. If a field returns a number or a

string, then it is complete.If the field returns an

object, then the query contains a selection of fields

that pertain to that object.

The graphQL server represents all possible entry

points to GraphQL API queries as root type.

Fig 6.0 - Rootfields

The above query provides human is a query type that

accepts id as the argument. To access a database,

context is used to grant access. The query returns a

promise since it is asynchronous. GraphQL waits for

tasks, futures and promises to complete which

ensures optimal concurrency.

VII. CONCLUSION

In this paper, we have clearly analyzed how to

implement GraphQL in mobile systems and migrate

to a better way of retrieving data from APIs. We

have also discussed the use of GraphQL and how

advantageous it is when it comes to bouncing off one

endpoint to retrieve necessary data. Being able to

quickly configure endpoints for your server with the

language of your choice makes it much more flexible

to use this querying language. There is no language

or best practices as such for different platforms while

using graphQL but this is more of a methodology

which focuses on the implementation aspects of the

technology.

FUTURE WORKS

There are a few setbacks to GraphQL but it has really

come a long way in providing an alternative protocol

to query data. GraphQL as such has quite a few

problems and this can be addressed in improving the

efficiency of this querying language. Complex

querying is an issue in graphQL because once the

user requests too many nested objects at once, the

components struggle to handle this situation, so for

smaller applications, REST still works best. Rate

limiting is also something that needs to be

considered since everything between expensive to

cheap operations can be performed and that at

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 421

someway undermines capacity of the data being

requested.

VIII. REFERENCES

[1] “GraphQL: Core Features, Architecture, Pros and

Cons.” AltexSoft,

www.altexsoft.com/blog/engineering/graphql-core-

features-architecture-pros-and-cons/.

[2] Why GraphQL: Advantages, Disadvantages &

Alternatives. (2018, July 03). Retrieved from

https://www.robinwieruch.de/why-graphql-

advantages-disadvantages-alternatives/

[3] GraphQL: A query language for APIs. Retrieved from

https://graphql.org/

[4] /@pranayairan. (2017, July 10). Hello Apollo Writing

Your First Android App With GraphQL. Retrieved

from https://android.jlelse.eu/hello-apollo-writing-

your-first-android-app-with-graphql-d8edabb35a2

[5] /@stubailo. (2018, April 6). GraphQL vs. REST.

Retrieved from

https://blog.apollographql.com/graphql-vs-rest-

5d425123e34b

