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ABSTRACT 
 

Boundary effects on Rayleigh-Benard-Marangoni stability in a layer of composite scheme in which a liquid 

layer overlies a saturates porous material bounded by slabs of finite thermal conductivity and finite thickness 

has been investigated by means of linear stability analysis.  The eigen value problem resulting from the 

stability analysis is solved by regular perturbation technique. It has been found the stability characteristics in 

terms of the critical Rayleigh number   critical Marangoni number   is profoundly influenced by the 

conductivity and slab thickness. Dependency of thermal conductivity ratio, and depth ratio is graphically 

discussed. The current findings may provide useful data in the solidification phase of alloys to understand the 

convective movement of the melt. 
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I. INTRODUCTION 

 

Thermal convection within a two-layer system 

constructed by a layer of fluid overlying a porous 

material saturated with the same fluid has numerous 

geophysical and industrial applications, such as the 

manufacturing of composite materials used in the 

aircraft and automobile industries, flow of water 

under the Earth’s surface, flow of oil in underground 

reservoirs and growing of compound films in thermal 

chemical vapour deposition reactors. A detailed 

review is given by Nield & Bejan (2006), with 

current highly relevant literature including Chen 

&Chen (1988), Ewing &Weekes (1998), Blest et al. 

(1999), Straughan (2002, 2008),Carr (2004), Chang 

(2004, 2005, 2006), Hirata et al. (2007), Hoppe et al. 

(2007), Mu & Xu (2007) and Hill & Straughan (2009).  

Chen and Chen (1988) produced a classical paper 

in which they have studied the thermal convection 

in two-layer system composed of a porous layer 

saturated with fluid over which lay the same fluid. 

The work of Chen and Chen (1988) employed the 

fundamental model for convection in a porous-fluid-

layer system developed originally by Nield (1987). 

He reported that the relative thickness of the two 

layers determined whether this convection is 

concentrated in the fluid layer or in the porous layer. 

We examine the linear stability of Rayleigh-Benard-

Marangoni convection   between slabs of finite 

thermal conductivity and finite thickness due to an 

applied pressure gradient in the presence of an 

applied vertical temperature gradient. We believe 

that this problem is paradigmatic to the very general 

problem involving the interaction between a non-

uniform applied temperature gradient and a variable-
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viscosity flow. The results are relevant to current 

industrial applications involving chemical vapour 

deposition or the cooling of electronic equipment; 

see e.g. (Nicolas 2002, Ruan et al.2004, Hill 2004, 

Straughan 2008 , Generalis and Busse (2008)). The 

objective of the present study is to investigate the 

influences of the solid plates of finite thickness and 

of finite conductivity. The linear stability theory is 

applied and the resulting eigen value problem is 

solved by analytically using regular perturbation 

technique. The critical Rayleigh number  and The 

critical Marangoni number which depend on related 

physical parameters, are investigated. 

 

 

 

II.  CONCEPTUAL MODEL 

 

The system under investigation consisting of an fluid 

layer of thickness d  and saturating an underlying 

porous layer of thickness md
 and bounded by   solid 

layers of thickness of sd
. Thus the z  indicating 

distances vertically upwards the fluid-

saturated porous medium interface is at 0.z =  

 
 

III. Mathematical Formulation 

 

The fluid-porous -solid 

layers governing equations are: 

Fluid layer: ( )0 z d 
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Solid layer: 

( )( )0 ands m sd d z d z d d− +     + : 

2 .s
s s

T
D T

t


= 

     

      
(7) 

  

Where q is the velocity vector, T is the temperature, 

p is the pressure,  is the thermal diffusivity,  is 

the thermal expansion coefficient,  is the porosity 

of the porous medium, A  is the ratio of heat 

capacities , 0 is the reference fluid density and the 

subscript m refer to the quantity in the porous layer. 

To investigate the stability of the basic state, 

infinitesimal disturbances are superimposed in the 

form 

 ( ) ( ), , ,b b m mq q T T z p p z p q q  = = + = + =

      
(8) 

( ) ( ),m mb m m m mb m mT T z p p z p = + = +
 

      
(9) 

Where the primed quantities are the perturbed ones 

over their equilibrium counterparts. 

Following the standard linear stability analysis 

procedure and noting that the principle of exchange 

of stability holds, we arrive at the following stability 

equations (for details see Chen F. 1990): 

( )2 2 0sD a−  =
    

      
(10) 
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2

2 2 2D a W Ra− = 
    

      
(11) 

( )2 2D a W−  = −
    

      
(12) 



Volume 4, Issue 9, November-December-2019 |   www.ijsrcseit.com  202 

( )2 2 2

m m m m m mD a W R a− = − 
   

      
(13) 

( )2 2
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( )2 2 0m m sD a−  =
    

      
(15) 

where , m

m

d d
D D

dz dz
= = , 

2 2 2 2, ma l m a l m= + = + are the overall 

horizontal wave numbers in fluid and porous layers 

respectively. 
2 2 2 2 2 2 2x y z =   +  +  , 

2 2 2 2 2 2 2

m m m mx y z =   +   +   are the Laplacian 

operators in fluid and porous layers respectively.  

The boundary conditions are: 

,s r sD k D   = =                  at                  1z =    

      (16) 

,m s m rm sD k D   = =             at                  

1z =−         (17) 

0sD =                                   at                 

( )1 , 1 .rm rz d d= − + +     (18) 

Here, r sd d d=
is the ratio of the solid plate thickness to the liquid layer thickness and  rm s md d d=

 is the ratio of the solid plate thickness to the porous layer thickness with   and   is the ratio of the thermal conductivity of the solid plate to that of the fluid layer and  is the ratio of the thermal 

conductivity of the solid plate to that of the fluid 

layer with 
.rm rk k=

 Solving Eq. ( )15
 for the solid 

layer, together with the boundary conditions

( ) ( )16 18−
, the thermal boundary condition at the 

solid-fluid interface becomes 

( )tanh .rm m m rm mD k a a d=          at 1z = −

           (19) 

( )( )tanh 2 .r rD k a a d= +   at 1z =  

            (20) 
2 2 0 at 1D W Ma z+  = =   

      (21) 

0 1m mW at z= = − .   

             (22) 

 

At the interface (i.e., z = 0) the continuity of velocity, 

temperature, heat flux, normal stress and the Beavers 

and Joseph 1967 slip conditions are imposed. 

Accordingly, the conditions are: 
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Where 
m

d

d
 = the thickness of fluid layer to porous 

layer and    is the Beavers-Joseph slip parameter. 

 

3.  Long wavelength asymptotic analysis 

 

The solution of the Eqs. (10) – (15) and 

boundary conditions Eqs. (16) – (18) is obtained  

using a regular perturbation technique with wave 

number a  as a perturbation parameter. For studying 

the validity of the small wave number analysis, the 

variables  
, and ,m mW W  

are expressed in terms of 

the small wave number a , 
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 Substitution of Eqs. (28) and (29) into Eqs. (11) – (14)   

and collecting the terms of zeroth order, we obtain 
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and the boundary conditions becomes
  

 
2
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And at the interface( 𝑖. 𝑒 𝑧 = 0) 
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The solution to the zeroth order Eqs. (30) - (33) is 

given by 

0 00, ,
T

W



=  =  0 00, 1m mW =  =
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At the first order in 
2a  Eqs. (11) – (14) then reduces 

to 
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The general solutions of Eq. (40) – (42) respectively 

given by  
2 3 4

1 1 2 3 4
2 6 24
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Equations (41) and (43) involving 
2

1D 
and 

2

1m mD 
 

respectively provide the solvability requirement 

which is given by 

                                                                    

  (51) 

The expressions 𝑊1 and 𝑊𝑚1 is back substituted in 

(51) and integrating , we obtain the expression for 

critical Rayleigh number cR
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IV. Results and Discussion 

 

Rayleigh-Benard-Marangoni stability in a 

layer of composite scheme    affected by walls of 

finite thickness and of finite conductivity were 

investigated by the linear analysis.  The resulting 

eigen value problem is solved  analytically using a 

regular perturbation technique with wave number a 

as a perturbation parameter. The marginal stability of 

the system considered in this investigation is given 

by equation (52). We can check this formula against 

known results for the following limiting case:  

In the limit 0M →  and 1  ,  equation (52)  is 

simplified to the following result, which is the case  

of a single   fluid layer between a  solid walls of finite 

thickness and of finite conductivity, 

( )( )720 1 2 .c r rR d k= − +                                                                                        

            (53) 

As 
0 or 0,r rk d= =

 equation (53) can be reduced 

much further to the result  
720cR →

   which is the 

known exact value (Nield 1987). 

 

  To gain physical insight into the onset of the 

convection, we illustrate the eigen functions of 

vertical velocity W  and corresponding streamline 

patterns in Figure 2.  Figure 2 present the 

analytically predicted velocity profile at the vertical 

center line of a system for 1 = and various values of 

the r rk and d
 for 

0.1, 1, 0.75, 0.001T Da  = = = =
. It shows that 

the major part of the flow is confined in the pure 

fluid layer 
( )0 1z 

, while the fluid is almost at 

rest in the porous part.  The variation of  cR
  

obtained as a function of depth ratio ζ for different 

values of
,r rk d

  are presented in a Fig.3. As expected, 

the effect of increase in  
,r rk d

 is to increase the 

critical Rayleigh number. Furthermore, the variation 

in has a significant effect on the onset of convection 

for the values of  2.5,  while the curves of 

different 
,r rk d

  merge into one when 6.  The 

variation of  cM
  obtained as a function of depth 

ratio ζ for different values of
,r rk d

  are presented in 

a Fig.4.   As expected, the effect of increase in  
,r rk d

 

is to increase the critical Rayleigh number. 

Furthermore, the variation is significant on the onset 

of convection for the values of  2.5,  while the 

curves of different 
,r rk d

  merge in to one when

6.   

     A plot of cM
 as a function of 

c

mR
 is shown in 

Fig.6 for a several values of 
, rkr d

 for, 
0.725T =

64 10 and 1.Da −=  = We notice from figure that 

when 
0cM =

, the curve trend toward 
485c

mR =
 for   

1r rk d= =
the curve trend toward 

410c

mR =
for 

50cM =
. This shows that the thermal buoyancy 

dominates the system over the effect of surface 

tension. It is evident from figure that the effect of 

thermal buoyancy increases so that the system is 

under   the domination of the thermal mode. 
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Fig.2. Vertical velocity profile for different values 

of ,kr dr  when   1. =   

 
Fig.3. cM versus  for different values of dr when 

1kr =  

 
Fig.4. Variation of cM with  for different values 

of dr . 

   
Fig.5. Variation of cM with  for different values 

of ,kr dr . 

 
Fig.6. Variation of M with R for different values of 

,kr dr when 1 =  

 

 

V. CONCLUSION 

Boundary effects on Rayleigh-Benard-Marangoni 

stability in a layer of composite scheme in which a 

liquid layer overlies a saturates porous material 

bounded by slabs of finite thermal conductivity and 

finite thickness has been investigated by means of 

linear stability analysis .  From this we observed that 

it is possible to control the convection effectively by 

choosing various physical parameters . 

In this investigation, an analytical study of 

Rayleigh-Bernard-Marangoni convection in a 

superposed fluid and porous layers with boundary 

slab. The simultaneous effect of the depth ratio, and 

the heat conductivity ratio and depth ratio (slab)   

were examined pictorially and compared to the 

constant viscosity model. The following main 

determinations are pointed out as follows throughout 

the above analysis. 

• Stabilizes a larger depth ratio (slab)   and the 

critical numbers of Marangoni and Rayleigh 

increases with . 

• Increasing the heat conductivity ratio 

contributes to a stabilizing state as heat disturbances 

deep into the solid layer are easily dissipated and the 

critical numbers of Marangoni and Rayleigh rises. 
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