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ABSTRACT 
 

This study investigates  the effects of dufour and coriolis force on classic Rayleigh -Bѐnard problem for an 

laminar, viscous, unsteady incompressible fluid flow heated from below is extended to 3-dimesional  

convection in a finite geometry with isotropic and anisotropic porous media rotating with constant angular 

velocity.  For the given physical set-up, g partial differential equations of the physical configuration are 

transformed to a set of non-dimensional ordinary differential equations using similarity transformation.  This 

demands to apply Fourier series method to study the characteristic of velocity, temperature and 

concentration for the effect of Taylors number, Rayleigh number, Hartmann’s number  and Prandtl number 

for both anisotropic and isotropic porous media. The results of steam function and isotherms on various 

parameters have been discussed and found to be good agreement for the physical system.) 

Keywords: Isotropic and anisotropic porous media, Free convection, Coriolis force, MHD. 

 

I. INTRODUCTION 

 

Among the different forms of energy, heat energy 

for its application in wide variety of fields has its 

own importance not only in industry but also in 

personal life. Humans are associated with the, 

utilization [1-3], generation [4], transformation [5] 

and convection [6] of heat energy management and 

conservation.  In the last few decade research on 

thermally driven fluid flow and convection has 

considerably increased due to its applications diverse 

areas like, in meteorology, chemical food, 

metallurgical industries, nuclear reactor system, 

energy conservation and storage.  Essential coupling 

between flow and thermal filed makes the buoyancy 

driven flows has not been investigated much.  The 

problems in these flows are classified as free 

convection(external) and natural 

convection(internal) .  

Gelfgat et al. [7] in 2001 studied of the effect of 

magnetic field on the an axisymmetric convective 

flow,  convection in a vertical cylinder with a 

temperature variation on the sidewalls was 

considered. Galerkin method was applied to analysis 

the three dimensional stability of the flow. 

Rayleigh–Be´nard convection exist when the 

horizontal wall is heated from below. This study has 

been done for various applications, particularly in 

http://ijsrcseit.com/
http://ijsrcseit.com/
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the field of  electronics. Rayleigh–Be´nard 

convection is represented by non-linear partial 

differential equations for momentum, mass and 

energy whose resolution becomes ambiguous when 

the Rayleigh number exceeds a critical value. Many 

detailed investigations on Rayleigh–Be´nard 

convection, as well as reviews on this, like those of 

Yang [8] and Koschmieder [9]. 

The transformation from the conductive to the 

convective mode takes place at higher Rayleigh 

numbers than those for cavities with isothermal hot 

walls, and the flow in the central part of the cavity is 

more complex and non-permanent Fusegi et al. [10] 

and Janssen et al. [11]. 

Initially numerical studies of Natural convection 

flow were normally limited to two–dimensional 

configuration with comparatively low Rayleigh 

numbers (Ra). The fundamental ground of work was 

setup by de Vahl Davis et al [12] it gave original 

standard solutions for a square 2D cavity with 103 to 

106 ; subsequently, Hortmann  [13] came up  with 

more accurate results by using the multi-grid method 

with a extremely finer mesh. Lot of others have 

duplicated the results with Ra up to 108 [14–17]. 

1.1 Nomenclature 
a =  width of 

the rectangular 

channel 

 =  Thermal 

expansion co-

efficient 
c =  Specific 

hear at constant 

pressure 

g = (0,0, )g−  

acceleration due 

to gravity 

h =  Height of 

the rectangular 

channel 

 =   Thermal 

diffusivity in 

isotropic case 

( , , )x y z   =

 Thermal 

diffusivity 

along , ,x y z  

axis in 

anisotropic case 

k =   

Permeability in 

isotropic case 

( , , )q u v w= =  Velocity 

of the fluid 

aR =  Thermal Rayleigh 

Number 

t =  Time  

T =  Temperature 

T =  Characteristic 

temperature difference 

0T =  Reference 

temperature 

 =  Deviation from static 

temperature 
 =  Density 

0 =  Reference density 

( ) ( ),
S f

c c   =Heat 

capacity per unit volume 

of the solid and fluid 
, ,x y z =  Space 

coordinate 
 =Thermal viscosity 

( ),x y = =  

Streamline function 

Rc =  Solutal Rayleigh 

Number  

0S  = Reference 

Concentration 

S =  

Characteristic 

Concentration 

difference  

s =  Deviation 

from the static 

concentration 

 =   Growth rate 

2
2 d

Ta



= =  

Taylors Number 
2

k hx

k az

 = =
 
 
 

 

Anisotropic ratio 
2

x

z

h

a





 
 
 

= =  

Aspect ratio 

(0,0, ) =  =  

Uniform angular 

velocity of the 

system 

( ), ,k k k kx y z=

 Permeability 

along x,y,z axis 

in anisotropic 

case 

1p =  Pressure 

1

1 2
p p r= −   

S =  Concentration 

 , ,
x y z

  
 = =

  

 
 
 

 Three 

dimensional 

gradient operator  

2 2 2
2

, ,
2 2 2

x y z

  
 = =

  

 
 
 

 Three 

dimensional 

Laplacian operator 

 

Multiple attempts have been made on three- 

dimensional (3D) simulations, as the actual flow is 

always a 3D. the effects of a certain aspect of a ratio 

on flow patterns with Ra of order 106 was studied by 

Mallinson et al. [18]. Hysteretic  behavior , observed 

by Labrosses et al. [19] using a pseudo-spectral solver. 

Trias et al. [20,21] investigated the 3D cavity of 

aspect ratio 4 with periodic lateral walls and showed 

that there is significant difference in the flow 

dynamics between two- dimension and three- 

dimension results. It is emphasized that natural 

convection flow in a three dimensional cubical 

cavity with adiabatic lateral walls has been 

comparatively explored less [22-24]. 

There is no work carried out by to understand the 

effect of concentration on the temperature. This 

effect can be understood with the dufour term which 

is introduced in the temperature equation. Here the 

main objective of the study is to understand the 

effect of dufour and coriolis force on classic Rayleigh 

-Bѐnard problem for an laminar, viscous, unsteady 

incompressible fluid flow heated from below is 

extended to 3-dimesional convection in a finite 

geometry with isotropic and anisotropic porous 

media rotating with constant angular velocity. 

 

 

II. MATHEMATICAL FORMULATION 

 

A 3-D free convection in a rectangular porous box, 

non-uniformly heated from down is considered.  The 

porous media is considered to be saturated and an-

isotropic by a incompressible homogeneous fluid. 

The rectangular box is of width a and height h, we 

choose vertical direction of the box as z axis, the 
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horizontal walls of the box are at z=(0,h) and the 

horizontal direction along the length of the box as x 

axis, vertical walls are at x = ± a/2,  Fig. (1).  In order 

to neglect the inertia terms and appeal to Boussinesq 

approximation  Prandtl-Darcy number is assumed to 

be very large.  The 3-D model of the Darcy-

Boussinesq equations takes the formKeep your text 

and graphic files separate until after the text has been 

formatted and styled. Do not use hard tabs, and limit 

use of hard returns to only one return at the end of a 

paragraph. Do not add any kind of pagination 

anywhere in the paper. Do not number text heads-

the template will do that for you. 

0
u u

x z

 
+ =

  ,               (2.1) 

  0

1
2 0

x

p
u v

x k






+ −  =


,

                           

(2.2) 

   
0

1
2 0

p
v u

y ky






+ +  =


,

                     

(2.3) 

       0 0

1
0

z

p
g w

z k



 


− + =


 ,   (2.4) 

        

2 2 2 2

2 2 2 2
.

S Sx z
x zc cs s

T T T
c T

t x x z z

 
  + +

    
+  = +

    

   
   
   

                                                                          

(2.5)      

2 2

2 2x z

S S S S S
u w

t x z x z
 

    
+ + = +

     ,               (2.6) 

     0 0 0 [1 ( ) (  )]T T S S   = − − + − .
    

(2.7) 

 

 

Fig. 1. Physical Configuration.  

 

The lower and the upper walls of the box are at 

isothermal temperatures T0 andT0+∆T here ∆T is the 

absolute temperature. All the walls of the box are 

considered to heat conducting and impermeable. 

From the equations (2.1) to (2.7) we get that a static 

conduction occurs if the constant temperature 

circulation depends linearly on z  and is sovereign of 

x. 

0 1
z

T T T
h

= +  − +
  

  
  

,

 0 1
z

S S S s
h

= +  − +
  

  
  

  (2.8) 

Where   and s are the deviations from the static 

temperature and concentration respectively. 

Because  the flow is axis symmetric, we represent the 

stream function  ( , )x y = by  

,u w
z x

  
= = −

  .    (2.9) 

Non-dimensional terms are represented by asterisks

  ** * 2

2 2

*

, , , ;
yx z

z

avau w ch t
u v w t

h h h

 


= = = =

 * * *
, , ,x ax y ay z hz= = =  

 
**

* * *0
0 0, , , ,zz

z

vk pa
T T TT p S SS

h k

 
  = =  =  = = 

      

.(2.10) 

On introduction of above expressions into equations 

(2.1)-(2.7), the governing equation takes the form: 

2 2

2 2
0a S a

s v
R R T

x z x x z


   
    

+ + − − =
    

 
 
 

 (2.11) 

2

2
0

a

v
T

z z



 

+ =
  ,    (2.12) 

2 2

2 2c S
S

P
x z t t




   
+ − =

   

 
 
 

,

    

(2.13) 

2 2 2 2

2 2 2 21
S

m
p

x z x z x t


 
 

     
+ + + − =

     

   
   
   

.

  (2.14) 
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Where, Rs is the Solutal Rayleigh number (or 

Darcy- Solutal Rayleigh number) and Ra is the 

Rayleigh number (or Darcy- Rayleigh number,is 

given by 

, , .
g Sk h g Tk hSz zzR p RaS m T Csz z

 

   

 
  
 

 
= = =



 (2.15) 

The anisotropy aspect ratio of permeability and 

diffusivity of temperature are represented by 

, , and     

2 22

, , ,
k h h hx x x x

k a a az z z z

  
  

  
= = =

     
     
     

 

2 2

,
1

k kh ax x x

k ka hz z z


 


= =

   
   
   

.  (2.16) 

The boundary condition for absolutely impermeable 

boundaries and heat conducting walls is given by 

1 1
, 0 1

2 20 on
1 1

0, 1
2 2

x x z
v

S
z

z z x

 

= − =  


= = = =


= = −  







.

  (2.17) 
 

III. STEADY FLOW PATTERNS AND LINEAR 

STABILITY 

Free convection, mentioned by linear versions of the 

equation (2.11) to (2.14). The solution of these 

equations can be expended in Fourier series as 

0

1

( )cos ( )sin
2

t

n n
n

C
e C x n z D x n z


  


=

= + +
 
  

, 

   (3.1) 

0

1

( )cos ( )sin
2

t

n n
n

F
e F x n z G x n z


  


=

= + +
 
  

, 

   (3.2) 

0

1

( )cos ( )sin
2

t

n n
n

A
e A x n z B x n z


  


=

= + +
 
  

, 

  (3.3) 

0

1

( )cos ( )sin
2

t

n n
n

S
S e S x n z H x n z


 



=

= + +
 
  

. 

  (3.4) 

Where 
, , , , , ,n n n n n n nC D F G A B S

and nH
 are in terms of 

x only and the growth rate is represented . To 

satisfy the boundary conditions (2.17) we need to 

consider 
0n n n nC F S B= = = =

for all x . 

On substituting the equation (3.1) - (3.4) to the 

linearized governing equations, we get differential 

equations: 

   

2
2 2

2
0n n

n a S a n

dG dHd
D R R T n An

dx dxdx
    + − + =−

 
 
 

,  (3.5) 

       
0n a nA T n D + = ,    (3.6) 

      

2
2 2

2

n
c n n

dDd
P H Hn

dxdx
  − =−

 
 
 

,  

 (3.7) 

          

2 2
2 2 2 2

2 21

n
n n np H

m

dDd d
G Gn n

dxdx dx
   + − =− −

   
   
   

.     (3.8) 

And the boundary conditions for 
, ,n n nD G A

and nH

as below 

                           

1 1 1 1
0, 0,

2 2 2 2
D D A An n n n= = = =− −

       
       
       

             

1 1 1 1
0, 0.

2 2 2 2
G G H Hn n n n= = = =− −

       
       
       

       (3.9)
 

We can conclude from equation (2.11) - (2.14) and 

from boundary condition (2.17) that  to be real. 

Thus, to find critical Rayleigh number cRa

which is a function of
( ), , ,    , for the marginal 
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stability we can substitute 0 =  in the equations 

(3.7) and (3.8).  The set of equations (3.5) to (3.8) 

together with the bc’s (3.9) gives Ra as the eigen 

value, cRa
is the smallest eigen value.  The general 

solution is of the form 

 1 2 3 4( , ) cos sin cos sinn aD x R C px C px C qx C qx= + + +

,  (3.10) 

( )1 2 3 4( , ) sin cos sin cosn aG x R t r C px C px C qx C qx= − + −  

, (3.11) 

( )1 2 3 4( , ) sin cos sin cosn aH x R s r C px C px C qx C qx= − + −  
, (3.12) 

 1 2 3 4cos sin cos sina
n

n T
A C px C px C qx C qx





−
= + + +

.

  

(3.13) 

Where, 1C , 2C , 3C and 4C  are arbitrary constants and  

221 2 2 2 21 2 12
2

22
2 2 2 21 2 12

p R TTm s aap R n nq a
P Pc c

p R TTm s aaR n na
P Pc c

 
 

 


+

= − + − + ++

 − − − ++

        
     

      
     

 (3.14) 

2
2 2 2

2
2 2 2

1

,

1

a

a

T
q p n

r
T

p q n

 


 


+ +

=

+ +

  
  

  

  
  

  
2

2 2 2

1

1

,

a

a c

pm
Pc

T
q n

s

q R P

 



 
−  

 

+ +

=

 
 
 

 
 
 

( )

2
2 2 2

1

1

.

a

a c S

P pmc
pm
Pc

T
q n

t

q R P R

 




−
 
−  

 

+ +

=

−

 
 
 

 
 
 

        

               
(3.15)

 

 

Here, 𝑝 ≠ 𝑞 is assured by the boundary conditions 

at cRa Ra
.from (3.9) boundary condition we get 

the non-trivial solution of the given problem when 

I. (1 ) sin (1 ) sin 0
2 2

p q p q
r r

+ −
− − + =

   
   
   

 and

2 4 0C C= =
                                     

(3.16) 

II. (1 ) sin (1 ) sin 0
2 2

p q p q
r r

+ −
− + + =

   
   
   

 and

2 4 0C C= = .                         (3.17) 

In the case of isotropic medium where   = = = , 

cRa
 can be calculated by solving the equations 

analytically.  Where else in case of anisotropic 

medium where      =   , cRa
 found 

numerically. 

The isotropic porous media case: In this case the 

condition    = = =   is fullfilled if 

x x

z z

k

k




=

, i.e. 

the proportion of the parallel and perpendicular 

component of thermal diffusivity and the 

permeability are equal. 

The following condition for case I and II are 

obtained at 1r =  

2p q m− = , for 1, 2,3, 4.......m =   

  (3.18) 

It gives 

              

22
2 2 2 2 2 2

4 2 12
aa

a

c

Pc
p Pm c

R TTsR m n n
P

   


+ −
−

= + ++
  
  

  
.    (3.19) 

Where 1, 2,3, 4.......n =  and 1, 2,3, 4.......m =  

Critical RayEquation (3.19) the critical Rayleigh 

number, which is the smallest possible value of aR   

22
2 2 2

4 2 12
aa

c

c

Pc
p Pm c

R TTsRa
P

   
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+ −
−

= + ++
  
  
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. (3.20) 

For an isotropic medium, the smallest eigen value 

corresponds to 1n =  and 1m =  
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a
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Rh s
T

a P
Ra

T

a

h

a

h

 



+ −

−

+

=

+ +

     
     

     
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(3.21) 

As the limit 

0
h

a
→

 
 
   and 0aT → the channel tends 

to infinitesimal horizontal porous layer. In such 

case critical Rayleigh number 
2

4Rac =
it is in line 

with a well-known conclusion for the permeable 

layers [25].  The critical value from the equation 

(3.21) is not same as the conclusion found for a 

channel with absolutely insulating walls done by 

[26].  In case h a= , i.e we get a square box, equation 

(3.21) gives 
2

8cRa =
whereas the result 

corresponding to perfectly insulating lateral walls 

gives
2

4cRa =
. Since, in this case the heat transfer 

over the walls. A greater critical value is expected 

with conducting lateral wall box. 

The flow at the onset of neutral convection is the 

flow for moderately super Critical Rayleigh number.  

Since the equations (3.16) and (3.17) coincides 

when    = = = , i.e. when 1r =  ,the boundary 

value problem gives two linearly independent 

solutions.  It can also seen from (2.11) and (2.14) 

equations. 

Let 0 0 0, ,S  and 0  are the solutions at 
R Raa c=

, 

then 1 0
Ra  = −

, 1 0
 =

 and 1 0 =
 are linearly 

independent solutions. 

The two set of solutions are given by
     

(1)
cos sin sinQ Kx x z  = ;      

(1)
sin sin sinQs Kx x z  = ;

  
(1)

cos sin cosan T
Q Kx x z


  



−
= ;

   

(1)
sin sin sins Q Kx x z = −

,
 

(2)
cos sin sin

S

s
Kx x z  = ;             

(2)
sin cos sinS Kx x z  = ,  (3.22) 

(2)
sin cos cos

St
Kx x z

s
  = − ;  

(2)
cos cos sin

STa
s Kx x z

s


 


= −

   

(3.23)

 

Where, amplitude constants are Q  and S .  A 

symmetric flow pattern having 2n cells is given by 

equation (3.22), where the number of cells n  

depends on  . A symmetric flow arrangement 

having of 2 1n   cells is given by (3.23). 

 

Table 1.  Values for cRa for different values of 𝜉 and 

η.  The principle diagonal coincide with the 

isotropic case. 

𝜉/𝜂 0.125 0.25 0.5 1 2 

0.125 51463 26181 13419 6954 3662 

0.25 101699 51473 26190 13429 6964 

0.5 201691 101719 51493 26210 13449 

1 400998 201731 101758 51532 26250 

2 798652 401077 201810 101837 51611 

 

(i) The Anisotropic case:  

This case deals with the condition     =   

the non - trivial solutions for 
, ,D A Hn n n and 

Gn  when the equations (3.16) and (3.17) are 

fulfilled. Case I gives the solution in the form of 

i).

sin
2( ) sin sin ,

sin
2

p

D x px qxn q
= −

 
 
 
 
 

sin
2( ) cos cos ,

sin
2

p

G x s r px qxn q
= − −

 
 
 
 
   

sin
2( ) cos cos ,

sin
2

p

H x t r px qxn q
= − −

 
 
 
 
 

,

sin
2( ) sin sin

sin
2

p

n TaA x px qxn q





−
= −

 
 
 
 
 

 

 

and for case ii). 
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cos
2( ) cos cos ,

cos
2

p

D x px qxn q
= −

 
 
 
 
 

 

cos
2( ) sin sin ,

cos
2

p

G x s r px qxn q
= − −

 
 
 
 
   

cos
2( ) sin sin ,

cos
2

p

H x t r px qxn q
= −

 
 
 
 
 

 

cos
2cos cos .

cos
2

p

n TaA px qxn q





−
= −

 
 
 
 
 

 

Solutions (i) and (ii) are defined for an large numbers 

of eigen values. Let two smallest eigen values in each 

of the above case 1Ra and 2Ra
.  These values will 

exist at 1n = . Form equation (3.16) and (3.17) 1Ra and 

2
Ra

are calculated for a given value of , ,   and  . 

Critical Rayleigh number 

 1 2andcRa Ra Ra=
.Normally 1Ra

and 2Ra
are not 

equal, it means there exist an exclusive values for 

1 2andRa Ra
  i.e. at the convection there exist a 

different laminar flow pattern. 

 

IV.  SUMMARY 
 

In this study, the effect of uneven temperature 

gradient on the free convection in a horizontal 

rectangular box in three dimensions is investigated.  

The three dimensional problem is transformed to a 

two dimensional double diffusive convection 

problem, in which diffusing components are 

temperature and solute in a anisotropic and 

isotropic rectangular channels. Channel is 

considered to heat conducting and impermeable. 

The channel is heated non- uniformly from below 

and added solutes to build a linear concentration 

and temperature distributions in the perpendicular 

directions.  Apart from Boussinesq approximation, 

which states density remains constant throughout 

the momentum equation except for the body force 

and also the following assumptions have been 

considered. 

• Large heating at the walls implies the non-

dimensional parameters Darcy-Prandtl numbers 

are large and hence the inertial and viscous terms 

are neglected in the momentum equation. 

• Flow is symmetric with respect to Y-axis and 

thereby, introduced the stream function which 

enables to determine the critical Rayleigh 

number and solutal Rayleigh number based on 

the linear stability theory. 

The critical Rayleigh number cRa obtained by 

solving the resulting eigen value problem for 

( )    =  in the anisotropy case, whose eigen 

value is found to be  
2

2
21

1
4 1 1 a

spm

T
Rac R

 
 

−
= ++ + +

     
            . 

The critical Rayleigh number for the corresponding 

isotropic case ( )   = = =  as a particular case of 

the above equation whose eigen value is found to be  
22

2 2 2

1
4 2 12

aa
c

Pc
pm

TT
Ra Rs   


+ −

−
= + ++

  
  

    

The result is in accordance with the previous result, 

when 
0

a
T =

it reduces to Rayleigh number found in 

the non-rotating case , when 
0

a
T =

and 
   = = =  (in the isotropic case), as the limit 

0
h

a
→

it reduces to the standard results 
2

4c SRa R = +
 and 

2
4cRa =

 when 0Rs = in the 

absence of the second diffusing components which 

is in line with the acclaimed result for the porous 

layers [25].  Two sets of solution which are linearly 

independent are derived, presents a different nice 

steady flow patterns at moderately super critical 

Rayleigh number. 

Fig. (8) Represents the plotted graph of critical 

Rayleigh number versus ratio of permeability to 

thermal diffusivity.  The observation shows that the 

critical Rayleigh number Rac varies inversely with 

ratio /   . The critical Rayleigh number are further 

increases with increasing Taylors number, Solutal 

Rayleigh number and the effects of rotation 

therefore, is to destabilize the system more 

significantly.  Observation from Steady flow 

Patterns. 
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V. CONCLUSION 

Using the  similarity transformation we transferred 

the partial differential equation to ordinary 

differential equation and  Fourier series analysis has 

been applied to obtained the solution of ordinary 

differential equations to know the critical Rayleigh 

numbers, stream function and isotherms of the 

physical domain to understand the effect of dufour 

and coriolis force on classic Rayleigh -Bѐnard 

problem for an laminar, viscous, unsteady 

incompressible fluid flow heated from below is 

extended to 3-dimesional convection in a finite 

geometry with isotropic and anisotropic porous 

media rotating with constant angular velocity 

The following observations have been main in  

flow pattern of the streamlines and isothermal lines. 

• The number of cells found to be increased 

with the increase in the Taylor’s number for both 

isotropic and anisotropic cases. Fig. (2) and (4). 

Increase in Taylor’s number increases the coriolis 

force, which intern increases the number of rotation. 

Increase in rotation increases the streamlines and 

isothermal lines.  

• The isothermal lines show the increase in the 

oscillatory flow behaviour with rotation in 

anisotropic case. Fig. (7) 

• The number of cell found to be decreased 

with increase in aspect ratio and thermal diffusivity 

in the anisotropic case. Fig. (5) and (6) 

• The isotherm becomes more and more 

flattened with the anisotropy. 
 

 
  

Fig. 2. Flow patternIsothermal lines and Stream lines in isotropic 

case (Ta-varying)  

  

   
Fig. 3. Flow patternIsothermal lines and Stream lines in isotropic 

case (𝜉-varying) 

 

  
 

 

Fig. 4. Flow patternIsothermal lines and Stream lines in anisotropic 

case (Ta-varying) 

 

 

   
Fig. 6. Flow patternIsothermal lines and Stream lines in 

anisotropic case ( 𝜒-varying) 

 

   
Fig. 7. Flow patternIsothermal lines and Stream lines in 

anisotropic case ( 𝜂-varying) 
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Fig. 8. Plot cRa vs /   (Rs=50, ξ=0.5, η=0.125) 
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