
CSEIT1949159 | Published - 21 Dec 2019 | November-December-2019 [(4) 9 : 384-389]

International Conference on Innovative Research in Engineering, Management and Sciences

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 4 | Issue 9 | ISSN : 2456-3307

384

Development of DMA Controller for Real Time Data Processing
in FPGA Based Embedded Application

Santosh Kumar.B*1

*1CSE Department, New Horizon College of Engineering, Bangalore, India

santhoshk@newhorizon.edu1

ABSTRACT

In present day technology there is an immense need of developing suitable data communication interfaces for

real time embedded systems. Field Programmable Gate Array (FPGA) offers various resources, which can be

programmed for building up an efficient embedded system. In recent years the SOC (System on Chip) design

eg, in media processing [1] is becoming more and more important in real time embedded applications as SOCs

require low power, low area but are still capable of implementing various complex functionalities. In order to

achieve SOC architecture, which can run a real time application, we need to develop high-speed data

interfaces of the system with the external world through its various I/O ports. The DMA controller, which

sends the data from I/O to memory and vice-versa without intervention of the processor, thus plays a vital

role in these systems in order to achieve faster I/O data transfer. This paper proposes a technique to

implement a DMA controller core on Spartan 3A FPGA hardware, which serves as an essential component

for developing a real time data acquisition and processing system.

Keywords : FPGA, EDK, DMA controller, ADC, DAC

I. INTRODUCTION

Whenever data is to be transferred from an I/O to

a memory, first the processor read the data from the

source address and then writes it to the proper

destination address. This leads to the wastage of CPU

cycles just for data transfer rather than processing. In

many applications like image and video processing,

where data needs to be transferred frequently from

I/O to memory, if the processor is involved in the

data transfer operation the throughput and overall

system performance may degrade. That is why in

those cases we use another controller; called DMA

controller is needed, which is responsible for

transferring the data without the intervention of

CPU. In this paper we have tried to implement a

DMA controller core to transfer real time data from

I/O to DDR2 SDRAM in the Spartan 3A starter kit.

There are many ways to implement a specific

application specific system design, i.e. either with

ASIC, microcontroller, microprocessor and Field

Programmable Gate Array (FPGA). But the reasons

behind the choosing of FPGA are re-configurability,

low power consumption and high speed compared to

microcontroller. While making a System on Chip

(SOC) the Dynamic Memory Access (DMA)

controller plays an important role for the data

transfer operation between I/O and memory. If large

number of data byte comes from different sources,

large processor cycles are wasted for the data transfer

operation. Thus here we have tried to develop a

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 385

DMA controller, so that the processor can involve

with its own work.

In our work we have sent a real time analog signal to

the DDR2 SDRAM through the DMA controller. The

analog data form function generator is first converted

to corresponding digital bits and then it is transferred

to DDR2 SDRAM through DMA controller. After

processing the data, taken from memory it as again

converted to onboard Digital to analog converter.

The output analog signal was shown in the digital

CRO.

II. DESIGN OVERVIEW AND HARDWARE

ARCHITECTURAL DESIGN

The work include both Analog to Digital and

Digital to Analog conversion using LTC 1407 Analog

to Digital converter and LTC 2624 Digital to analog

converter respectively. Spartan 3A FPGA board has

been used for the hardware verification. The analog

signal is taken from a function generator and is

converted to digital form using Spartan 3A FPGA

board. The data kept in the memory through DMA

controller. To verify the correctness of the data

stored in the memory by DMA controller, it was

converted back to analog signal again using LTC

2624 Digital to Analog converter and shown in a

digital CRO as well as in the HyperTerminal.

This work is implemented using the Xilinx EDK

11.1 (version) and Xilinx Spartan 3A FPGA

prototyping board has been used for the hardware

implementation and testing. Using the Xilinx

platform studio from EDK (Embedded Development

Kit) the hardware portion of the embedded system

has been developed. A soft core 32-bit RISC

processor Micro Blaze has been used as a CPU for

this embedded computing unit and all the required

soft core peripherals are UART (used for RS232 Data

Circuit- Terminal Equipment port), GPIO (General

Purpose I/O) to control different signal lines of

onboard ADC and DAC, MPMC (Multi Port Memory

Controller) as the DDR2 SDRAM controller and

DMA core. The blocks used to build up the FPGA

based embedded computing unit is shown in the

figure 1.

Figure 1: Block diagram architecture of FPGA

System [2]

The top level view of the designed system for real

time data processing is shown in Figure 2. The

function generator, source of the real time analog

signal is connected to the input pin of the onboard

ADC. The digital output data is stored in memory

through DMA controller soft core. The data after

processing is converted to digital again using onboard

DAC. The output pin of the DAC is connected to the

Digital CRO, where we can see the output analog

signal.

The necessary software for this design is written

using the feature-rich C/C++ code editor and

compilation environment provided within the EDK

(Xilinx Embedded Development Kit)and SDK (Xilinx

Software Development Kit). SDK works with

hardware designs created with Xilinx Platform

Studio (XPS) [11]. The implementation system setup

is shown in Figure 2.

Figure 2: Architectural View of the System[3][4]

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 386

Analog To Digital Conversion

The analog capture circuit converts the analog

voltage on to a 14-bit digital representation, D[13:0],

as expressed by Equation[5]

The GAIN is the current setting loaded into the

LTC 6912-1 programmable pre-amplifier. The

reference voltage for the amplifier and the ADC is

1.65V, generated via a voltage divider. Consequently,

1.65V is subtracted from the input voltage on input

pins. The maximum range of the ADC is ±1.25V,

centered on the reference voltage, 1.65V. Hence,

1.25V appears in the denominator to scale the analog

input accordingly.

Finally, the ADC presents a 14-bit, two’s

complement digital output. A 14-bit, two’s

complement number represents values between -213

and 213-1. Therefore, the quantity is scaled by 8192,

or 213.

Digital To Analog Conversion

Each LTC 6912-1 DAC output level is the analog

equivalent of a 12-bit unsigned digital value, D[11:0],

written by the FPGA to the DAC via the SPI

interface. The voltage on a specific output is

generally described in equation below.

The reference voltage, VREFERENCE, is different

between the four DAC outputs. Channels A and B

use a 3.3V reference voltage. Channels C and D have

a separate reference voltage, nominally also 3.3V,

supplied by the LP3906 regulator designated as IC18.

The reference voltage for Channels C and D can be

modified. The reference voltages themselves have a

±5% tolerance, so there are slight corresponding

variances in the output voltage.

Figure 3: Digital-to-Analog Connection Schematics

[5]

LogiCORE IP XPS Central DMA Controller

(v2.03a)

The XPS Central DMA Controller provides simple

Direct Memory Access (DMA) services to peripherals

and memory devices on the PLB. The controller

transfers a programmable quantity of data from a

source address to a destination address without

processor intervention.

Figure 4: Block Diagram for the XPS Central DMA

Controller[5]

System Design

For the verification of the Successful transfer of

data through DMA controller the two GPIO core,

one timer core, a DMA controller core and DDR2

SDRAM has been included in the system design. The

two GPIO cores are used to control the onboard

LTC6912-1 programmable preamplifier and

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 387

LTC1407A-1 Analog to Digital converter chip

respectively. The timer core has been used for delay

as SPI clock frequency is not exactly equals to board

clock frequency. The GPIO, timer, memory, DMA

controller and the processor share the same bus in

the system. The DDR SDRAM is controlled by

MPMC (Multi Point Memory Controller) core.

GPIO_1, which controls the serial data output line of

the A/D converter, has been used as the source and

DDR2 SDRAM has been used as the destination of

the data transfer. The design view, shown in Fig. 34,

has been implemented using Xilinx Platform Studio

(11.1), shows the connection between Processor,

DMA core, GPIO and DDR SDRAM (MPMC).

Fig 5: shows the connection between processor core,

DMA core, GPIO core and DDR2 SDRAM (MPMC).

III. ALGORITHM FOR TRANSFER OPERATION

This paper displays a systematic procedure for

outline of upgraded topologies for reconfigurable

single-loop

Following the timing diagram of the LTC6912-1

amplifier and LTC1407A-1 analog to digital

converter firstly the gain is set in the amplifier. In

the LTC6912-1 amplifier chip there is a inverting op-

amp and a SPI interface is present. The gain is

needed to set by send data bit serially from FPGA to

SPI interface in the rising edge of the SPI clock. The

op-amp gets 1.65 volt at the positive side by a voltage

divider from 3.3 volt onboard supply. The op-amp is

used to amplify the analog signal to the LTC1407A-1

onboard Analog to Digital converter.

Figure 6: Flow Diagram of DMA transfer

implementation [6]

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 388

The LTC1407A-1 automatically produces the

corresponding 14 bit digital value to the

corresponding channel of the SPI interface of

LTC1407A-1. Then the digital output is send bit by

bit to the memory through DMA controller in the

rising edge of the SPI clock. The whole operation is

depicted through a flow diagram shown in figure 35.

IV. EXPERIMENTAL SETUP SNAPSHOT

The snapshots in the figure 36 below show the

experimental setup for the successful verification

of data transfer through DMA controller core of

a real time signal.

 Fig 7: Run time verification of the design

V. EXPERIMENTAL RESULTS

The snapshot, shown in Figure 37 has been taken

from the Hyper Terminal of the computer, which was

connected with our FPGA device through the RS 232

serial link, this arrangement was done for verifying

our design. For the verification of the operation, an

analog signal of 10 KHz of pick to pick voltage 1.2

volt was taken as sample analog input signal which

was connected to the input of the Analog to Digital

converter via a DC blocking capacitor. Here the real

time analog signal is converted by the Analog to

digital converter and was sent to the memory.

In the snapshot you can see that, six columns have

been printed for every bit of data transfer. The first

value shows the bit position of the converted digital

value. The next one shows the previous value stored

in the memory address, shown in fifth column. The

third column shows the current value of the same

address after the data transfer operation completed.

After every bit of transfer the destination address of

the memory is automatically increased. To get the

proof of the DMA transfer operation DMA status

register’s value has been checked during the transfer

operation, which showed that DMA was busy during

transfer operation and no DMA bus error was

occurred.

 Fig 8: Experimental data view in the Hyper terminal

VI. EXPERIMENTAL SUMMARY

The power analysis shows that total dynamic power

0.17304 W and total power 0.48367 W has generated.

The junction temperature was 35.8 degree Celsius.

The statistics of the design and the device utilization

summary of the design are shown in figure below.

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 389

Fig 9: Experimental summary and run time

simulation snapshots

VII. CONCLUSION

The primary goal of this work was to perform a real

time data transfer between I/O and memory without

the intervention of the processor core and providing

a faster processing time. In future we want to

perform the communication between two FPGA real

time data transfer operation of audio data for voice

messaging applications, where analog to digital

conversion of the real time audio data is necessary

and we also wish to perform the real time

implementation of security protocols using FPGA

processor cores.

VIII. REFERENCES

[1] Keming Chen, Lingling Qi, Haibin Yu- DOI

10.1109/IITA.2008.493- “Design of Two-

Dimension DMA controller In Media Multi-

Processor SoC”.

[2] Suman Sau, Chandrajit Pal, Amlan Chakrabarti-

“Design and Implementation of Real Time

Secured RS232 Link for Multiple FPGA

Communication”.

[3] Linear Technology LTC2604/LTC2614/LTC2624

BLOCK DIAGRAM FEATURES APPLICATIONS

DESCRIPTION Quad 16-Bit Rail-to-Rail DACs

in 16-Lead SSOP.

[4] Linear Technology LTC1407-1/LTC1407A-1

BLOCK DIAGRAM DESCRIPTION Serial 12-

Bit/14-Bit, 3MspsSimultaneous Sampling ADCs

with Shutdown.

[5] Spartan 3A starter kit board user guide, UG334

(v1.1) June 19, 2008.

[6] Implementation of High Speed Real Time Data

Acquisition and Transfer System.

[7] An Improved DMA Controller for High Speed

Data Transfer in MPU Based SOC

