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ABSTRACT 
 

In the following paper equations for buckling of annular plates which are made of functionally graded 

material  are derived when subjected to temperature load. Equilibrium equations are derived using first order 

shear deformation theory under the thermal loads. The fundamental partial differential equations are derived 

using minimum potential energy. The material properties are assumed to be varying as a power form of the 

thickness coordinate variable z. 

These equations are solved by using number of methods like energy methods, analytical methods, finite 

difference method, and finite element methods. 
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I. INTRODUCTION 

 

Composite materials are cast using two or more 

materials having different physical or chemical 

properties. Fiber reinforced composite materials 

come under the category of high performance 

products. They are light but strong enough to take 

harsh loadings. Their use over the years has 

expanded into many areas like aerospace components, 

automotive and marine industries etc. Only 

shortcoming with these materials is the interface of 

the two materials across which there is a mismatch 

in mechanical properties causing large inter-laminar 

stresses. When these kinds of materials are exposed 

to high temperature environment then there arises 

the problem of debonding and delamination 

problems. Cracks develop slowly at the interfaces 

and grow into weaker material sections. 

To overcome the problem of debonding and 

delamination, group of scientists from Japan in 1984 

introduced a new material called Functionally 

graded materials. 

Functionally graded materials are the materials 

which are not homogeneous and material properties 

vary smoothly from one surface to the other. The 

constituent materials volume fraction is gradually 

varied to obtain varying properties. This variation in 

composition yields us the FGM’s with graded 

properties. The gradation in properties of the 

material causes temperature stresses, residual stresses, 

and stress concentration factors to reduce.  For a 

high temperature environment these materials are 

made of ceramic and metals or from a combination of 

different materials. The ceramic constituent of the 

material has  high temperature resistance. On the 

other hand ductile metal constituent is fracture 

resistant. These fractures are because of stresses due 

to high temperature. Ceramic and metal combination 

can be easily manufactured. Using graded property 

materials the interface problems of composite 
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materials are removed and stress distributions are 

smooth. 

 
Figure 1 Functionally graded material 

 

 

II.  EQUILIBRIUM EQUATIONS 

 

 
An annular plate with outer radius a, inner radius b, 

and thickness h made of functionally graded material 

is considered.  

The material properties of the plate vary along the 

thickness of the plate. The coordinate axis across the 

plate thickness is taken as z. So the functional 

relationships of E and  α with respect to z for the 

plate are 

 

𝐸 = 𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (
2𝑧 + ℎ

2ℎ
)

𝑃

 

 

𝛼 = 𝛼(𝑧) = 𝛼𝑚 + (𝛼𝑐 − 𝛼𝑚) (
2𝑧 + ℎ

2ℎ
)

𝑃

 

Where,  

Em=Modulus of elasticity of metal, 

Ec= Modulus of elasticity of ceramic, 

ϑ = Poisson’s ratio of FGM plate (assumed constant) 

P=Volume fraction exponent which takes values 

greater than or equal to zero 

αm-Coefficient of thermal expansion of metal 

 αc-coefficient of thermal expansion of ceramic 

The power law assumption will ensure simple rule of 

mixtures. This rule of mixtures applies only to the 

thickness direction. First order shear deformation 

theory is employed in the following study because it 

includes the effects of shear deformation. 

 

A) Displacement field 

Assuming a displacement field that allows shear 

deformation, 

𝑢0(𝑟, 𝑧) = 𝑢(𝑟) + 𝑧β𝑟(𝑟) 

                   𝑤0(𝑟, 𝑧) = 𝑤(𝑟)  

u0, and w0 - displacements of a point (r, θ, z) in the x 

and z directions respectively.       

u - in-plane displacements of a point (r, θ) on the 

middle plane 

w - transverse displacements of a point (r, θ) on the 

middle plane  

β
r

 - rotations of the normal to the middle plane 

about ′θ′ axes  

Strain-displacement relationship 

The strains at any point (r, z), in terms of strain and 

curvature of middle plane are[14] 

𝜖𝑟 = 𝜖�̅� + 𝑧𝑘𝑟 

                         𝜖𝜃 = 𝜖�̅� + 𝑧𝑘𝜃                          

The relationship between the middle plane strains 

and the middle surface displacements are, 

 𝜖�̅� =
𝜕𝑢

𝜕𝑟
+

1

2
(

𝜕𝑤

𝜕𝑟
)

2
 ,     𝜖�̅� =

𝑢

𝑟
 

                   𝑘𝑟 =
𝜕β𝑟

𝜕𝑟
,                 𝑘𝜃 =

β𝑟

𝑟
                                 



Volume 4, Issue 9, November-December-2019|  www.ijsrcseit.com  372 

𝜖𝑟 =
𝜕𝑢

𝜕𝑟
+

1

2
(

𝜕𝑤

𝜕𝑟
)

2

+ 𝑧
𝜕β𝑟

𝜕𝑟
 

𝜖𝜃 =
𝑢

𝑟
+ 𝑧

β𝑟

𝑟
 

𝛾𝑟𝑧 = β𝑟 +
𝜕𝑤

𝜕𝑟
 

B) Stress-Strain relationships 

Stresses developed are given by the following 

equations 

𝜎𝑟 =
𝐸(𝑧)

(1 − 𝜗2)
[𝜖𝑟 + ϑ𝜖𝜃 − (1 + ϑ)αT] 

    𝜎𝜃 =
𝐸(𝑧)

(1−𝜗2)
[𝜖𝜃 + ϑ𝜖𝑟 − (1 + ϑ)αT]                                 

𝜏𝑟𝑧 =
E(z)

2(1+ϑ)
𝛾𝑟𝑧 

C) Stress resultants and stress couples 

The forces and moments 𝑁𝑖, 𝑀𝑖  and 𝑄𝑟  of 

axisymmetric circular plates arising out of stresses 

are written as, 

(𝑁𝑖 , 𝑀𝑖) = ∫ 𝜎𝑖(1, 𝑧)𝑑𝑧 ,
ℎ

2

−
ℎ

2

     i=r,𝜃. 

                 𝑄𝑟 = ∫ 𝜏𝑟𝑧𝑑𝑧 ,
ℎ

2

−
ℎ

2

        

Therefore, 

            𝑁𝑟 = ∫ 𝜎𝑟 𝑑𝑧
ℎ

2

−
ℎ

2

              𝑁𝜃 = ∫ 𝜎𝜃 𝑑𝑧
ℎ

2

−
ℎ

2

                                                    

 𝑀𝑟 = ∫ (𝜎𝑟)𝑧 𝑑𝑧
ℎ

2

−
ℎ

2

        𝑀𝜃 = ∫ (𝜎𝜃)𝑧 𝑑𝑧
ℎ

2

−
ℎ

2

 

           

Where, 

𝑁𝑟  and 𝑁𝜃   - radial and circumferential in-plane 

force resultants and  

𝑀𝑟 and 𝑀𝜃 - radial and circumferential moments-

resultants (stress couples). 

D) Equilibrium equations and Natural boundary 

conditions. 

To derive equations of equilibrium minimum 

potential energy is used. These equations and 

boundary conditions are presented in the following 

section. 

The potential energy Π for the plate element is 

defined as 

                 Π=U+V-Wer   

  

Where, 

U= Strain energy of the plate 

V= Potential energy due to loads 

Wer= Work done by edge stress on edge ‘r’ 

The principle of virtual displacements can be 

expressed as 

𝛿Π = 0 

The total strain energy is 

𝜋 = 𝑈 + 𝑉 − 𝑊𝑒𝑟 

𝛿𝜋 = 𝛿𝑈 + 𝛿𝑉 − 𝛿𝑊𝑒𝑟 

= ∫ [(𝑟𝑁𝑟 − 𝑁𝑟0𝑟
)𝛿𝑢 + (𝑟𝑀𝑟 − �̅�𝑟)𝛿𝛽𝑟

𝜃

+ (𝑄𝑟𝑟 − �̅�𝑟 + 𝑟𝑁𝑟0

𝜕𝑤

𝜕𝑟
)  𝛿𝑤] 𝑑𝜃

+ ∫ ∫ {[𝑁𝜃 − (𝑁𝑟 + 𝑟
𝜕𝑁𝑟

𝜕𝑟
)]

𝜃

𝛿𝑢
𝑟

+ [𝑀𝑟 − (𝑀𝑟 + 𝑟
𝜕𝑀𝑟

𝜕𝑟
)

+ 𝑟𝑄𝑟] 𝛿𝛽𝑟

+ [−
𝜕 (𝑟𝑁𝑟0

𝜕𝑤

𝜕𝑟
)

𝜕𝑟
− (𝑄𝑟 + 𝑟

𝜕𝑄𝑟

𝜕𝑟
)

− 𝑟𝑞]  𝛿𝑤} 𝑑𝑟𝑑𝜃 

The equations of equilibrium and consistent 

boundary conditions are obtained by setting the 
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individual integral terms in the above equation to 

zero 

  𝛿𝑢:    
𝜕𝑁𝑟

𝜕𝑟
+

(𝑁𝑟−𝑁𝜃)

𝑟
= 0      

𝛿𝛽𝑟 :    
𝜕𝑀𝑟

𝜕𝑟
+

(𝑀𝑟−𝑀𝜃)

𝑟
− 𝑄𝑟 = 0       

𝛿𝑤:    𝑄𝑟 + 𝑟
𝜕𝑄𝑟

𝜕𝑟
= −𝑁𝑟0 (𝑟

𝜕2𝑤

𝜕𝑟2 +
𝜕𝑤

𝜕𝑟
) − 𝑟𝑞  

And natural boundary conditions are, 

On the edge ‘r’ 

 𝑢 ∶   𝑁𝑟0 = 𝑟𝑁𝑟                                 

     𝛽𝑟 ∶   �̅�𝑟 = 𝑟𝑀𝑟                                 

      𝑤 ∶   �̅�𝑟 = 𝑟𝑄𝑟 − 𝑟𝑁𝑟0
𝜕𝑤

𝜕𝑟
                     

 

E. Equilibrium equations in terms of displacement 

functions 

𝐴11 (𝑟
𝜕2𝑢

𝜕𝑟2 +
𝜕𝑢

𝜕𝑟
−

𝑢

𝑟
+

1

2
(

𝜕𝑤

𝜕𝑟
)

2

+ 𝑟
𝜕𝑤

𝜕𝑟

𝜕2𝑤

𝜕𝑟2 ) +

𝐵11 (𝑟
𝜕2𝛽𝑟

𝜕𝑟2 +
𝜕𝛽𝑟

𝜕𝑟
−

𝛽𝑟

𝑟
) − 𝐴12 (

1

2
(

𝜕𝑤

𝜕𝑟
)

2

) = 0

                                                                        

𝐵11 (𝑟
𝜕2𝑢

𝜕𝑟2 +
𝜕𝑢

𝜕𝑟
−

𝑢

𝑟
+

1

2
(

𝜕𝑤

𝜕𝑟
)

2

+ 𝑟
𝜕𝑤

𝜕𝑟

𝜕2𝑤

𝜕𝑟2 ) +

𝐷11 (𝑟
𝜕2𝛽𝑟

𝜕𝑟2 +
𝜕𝛽𝑟

𝜕𝑟
−

𝛽𝑟

𝑟
) − 𝐵12 (

1

2
(

𝜕𝑤

𝜕𝑟
)

2

) −

𝐴66 (𝑟𝛽𝑟 + 𝑟
𝜕𝑤

𝜕𝑟
) = 0                                                

𝐴66 (𝑟
𝜕𝛽𝑟

𝜕𝑟
+ 𝛽𝑟 +

𝜕𝑤

𝜕𝑟
+ 𝑟

𝜕2𝑤

𝜕𝑟2
)

= −𝑁𝑟0 (𝑟
𝜕2𝑤

𝜕𝑟2
+

𝜕𝑤

𝜕𝑟
) − 𝑟𝑞 

 

 

III. RESULTS 

Thus the equilibrium equations for buckling of 

annular plates for temperature are derived using 

minimum potential energy. 

The above equations can be solved by number of 

methods like energy methods, analytical 

methods, finite difference method, and finite 

element methods. 
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