
CSEIT194911 | Published - 21 Dec 2019 | November-December-2019 [(4) 9 : 663-668]

International Conference on Innovative Research in Engineering, Management and Sciences

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 4 | Issue 9 | ISSN : 2456-3307

667

Multi-Objective Optimization Approach to Generate String Test
Data

B. Swathi *1

*1 Department of ISE, New Horizon College of Engineering, Bengaluru, India

baswarajuswathi@gmail.com 1

ABSTRACT

String test cases are required by applications to recognize deformities and security issues. Nonetheless, its

viability isn't tasteful. In this paper, discovery string test case generation techniques are investigated. Two

objective functions are acquainted to produce compelling test cases. The optimization of the test cases is the

primary objective, where it very well may be estimated through string distance functions. The second

objective is controlling the string length distribution into a Benford distribution which suggests shorter

strings have, all in all, a higher shot of discontent location. At the point when the two objectives are

connected by means of a multi-objective advancement algorithm, predominant string test sets are delivered.

Keywords : Random Testing (RT), Benford distribution, String Test Cases

I. INTRODUCTION

In this paper, the objective is to produce a

compelling set of test cases where each test case is a

string. As clarified before, in light of exact

investigations [1]– [5], blame areas regularly form

nonstop locales in the info space. In light of this

presumption, a various set of test cases has a more

prominent possibility of distinguishing a blame. Thus,

it is trusted that an assorted set of test cases is bound

to deliver increasingly viable test cases. To

accomplish this in the string space, we have

characterized a wellness work that estimates the

assorted variety of a test set. This enables an

advancement procedure to be utilized to produce test

cases dependent on the wellness work. To build a

wellness capacity to gauge the decent variety, we use

distance functions between strings. There are a few

string distance functions accessible and subsequently,

in this paper, the performance when utilized in test

generation is considered. Diverse string distance

capacity's performance is thought about as far as the

viability of the produced test cases and their runtime.

Since runtime performance is important in useful

applications, further part expands the paper by

applying a hash based distance work into the test

generation strategies to improve the runtime

productivity.

The distribution of the length of the created strings

assumes an important job in disappointment

recognition. The paper contends that littler strings

have a higher possibility of distinguishing a

disappointment. Since the primary wellness work is

unfit to control the length distribution of the strings,

second wellness work which demonstrates the

nearness of the distribution of the lengths of the

strings in a test set to the objective distribution is

considered. A multi-objective improvement system is

utilized to apply both wellness functions at the same

time.

http://ijsrcseit.com/

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 664

II. ADAPTIVE RANDOM STRING TEST

CASE GENERATION

As examined in the past paper, to improve the

poor adequacy of RT, ART strategies are presented.

Chen et al. [6] first presented Fixed Size Candidate

Set (FSCS) and afterward an assortment of other ART

techniques[7] have been created by different

scientists. The greater part of the ART techniques are

intended for numerical test cases and they can't be

utilized to produce string test cases. Among the ART

techniques, the FSCS and ART for Object Oriented

software (ARTOO) [8] strategies are prepared to do

more mind boggling test case structures than fixed

size vector of numbers and they can be connected to

string test cases. Further, Mayer et al. [9] presumed

that FSCS was a standout amongst the best ART

techniques through an experimental investigation.

Subsequently, adjusted FSCS and ARTOO to produce

string test cases in this paper; these are checked on in

the accompanying areas.

A. Fixed Size Candidate Set (FSCS)

FSCS technique [2] significantly reduces the

computation time. In this paper, a string distance

work is utilized in FSCS. FSCS has been at first

presented for numerical test cases. Be that as it may,

it tends to be connected to other test case structures

like strings. The main prerequisite is that a distance

work is characterized between the test cases.

To create test cases, FSCS utilizes a distance based

method. The main string test case is created

randomly, like RT. At that point, to create other test

cases, a fixed size candidate set is utilized to deliver a

test case. Therefore, K random strings are created as

candidates (K=10 is utilized in the investigations

dependent on the proposal of Chen et al. [7]). A

string is chosen where it has the biggest distance

from recently executed string test cases.

B. ART for Object Oriented Software (ARTOO)

ARTOO [9] is an ART strategy intended for object

oriented software where it utilizes a distance work

between objects to produce the test cases. The

creators center around the particular issue of testing

functions of an object-oriented program where test

cases are input objects to the functions. ARTOO

works like FSCS , it chooses a test case among the

pool of candidates. The quantity of candidates for

ARTOO is picked as 10 to match with the FSCS. The

distinction among FSCS and ARTOO is the choice

guideline among the candidates. The mean distance

of every candidate to the recently chosen test cases is

determined. At that point, a candidate with the

biggest mean distance is picked as the champ (next

test case).

III. EVOLUTIONARY STRING TEST CASE

GENERATION

To produce string test cases, evolutionary

algorithms can be utilized. Among the evolutionary

algorithms, Genetic Algorithms (GA) [13] are the

most ordinarily utilized pursuit algorithm in

software building [14],GAs additionally fit great with

our application which requires string controls. Two

methodologies are utilized to create test sets

dependent on GAs. In the first place, we use a GA

with a solitary objective, where a decent variety

based wellness work is utilized. At that point, a

second wellness work is characterized to control the

length distribution of the strings. Thus, in the second

methodology, we utilize a Multi-Objective GA

(MOGA) to advance both wellness functions at the

same time.

A. Genetic Algorithm (GA)

In the accompanying, we first quickly clarify GA's

essential phrasing and after that, fitting wellness

functions and GA's parameters are examined.

Different chromosomes form a populace where a

chromosome is a candidate arrangement. At every

generation, a few chromosomes are chosen (by the

choice instrument) and posterity are produced by

means of a hybrid administrator. At long last, the

transformation administrator is used to roll out

random little improvements to the created posterity

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 665

bringing about a lower likelihood of getting to be

caught in a nearby ideal point.

IV. METHODOLOGY

To produce the test cases the accompanying steps are

performed by NSGA-II.

Step 1: The underlying populace with size N is

produced randomly.

Step 2: The populace is sorted.

Step 3: A posterity populace with size N is made

utilizing determination components, hybrid, and

change.

Step 4: A joined populace of posterity and guardians

is created with size 2N.

Step 5: The new populace is sorted and the main N

chromosomes are chosen to form the people to come.

Step 6: A verify whether the halting foundation have

been met is performed. On the off chance that the

rule isn't met, at that point we come back to step 3.

V. STRING DISTANCE FUNCTIONS

A distance work between two strings is required in

ART and evolutionary test case generation strategies.

A few string distance functions are presented in the

writing [9], [11], [12]. In spite of the fact that we

can't afford to investigate every one of them, a great

portion of them, particularly those that typically

perform well in software testing examines, are

shrouded in this paper. As needs be, we performed

the tests with six string distance functions. Four of

which are Levenshtein , Hamming, Cosine,

Manhattan [12], and Euclidian distance functions

that are more than once utilized in software testing

thinks about [9], [11].Further, we likewise utilized

Locality-Sensitive Hashing (LSH) method as a quick

gauge of string distance in our work.

A. LEVENSHTEIN DISTANCE

The Levenshtein Distance is an alter put together

distance that works based with respect to three alter

activities, "erase", "insert", and "update". Every task

has a related cost where each string can be converted

to the next string dependent on these alter activities.

The distance is the base expense of an arrangement

of alter tasks that converts one string into the other

string . The Levenshtein distance doles out a unit

cost to all alter activities. Numerically, the

Levenshtein distance between two strings, Str1 and

Str2, is equivalent to lev(Length(Str1), Length (Str2))

where it very well may be determined recursively by

whereStr1i denotes the ith character of Str1, and

Str2j denotes the jth character of Str2.

B. HAMMING DISTANCE

The Hamming distance [12] was at first acquainted as

a measure with figure the distance of good for

nothing streams. In any case, it has been adjusted to

be utilized for strings [12]. The Hamming distance of

two strings, as "abcd" and "anfd", is the quantity of

characters diverse in two strings. At the end of the

day, each character in the principal string is

contrasted and a character in the proportionate

position in the second string. In this precedent, the

distance is two. In cases where the sizes of two

strings are not equivalent, invalid characters (ASCII

code of zero) are added as far as possible of the littler

string until the two strings have an equivalent size.

For instance, the distance among "abdominal muscle"

and "acdb" is three[15].

C. MANHATTAN DISTANCE

The Manhattan distance [12] is regularly utilized for

vectors of numbers. It likewise can be connected to

strings as

Where Str1i and Str2i are ASCII codes of the ith

character. Like the Hamming distance, when the size

of the two strings isn't equivalent, invalid characters

are added to the shorter string.

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 666

D. EUCLIDIAN DISTANCE

The Euclidian distance is like the Manhattan

distance. It very well may be connected to strings as

Again, invalid characters are added to the shorter

string until the two strings have an equivalent size.

E. COSINE DISTANCE

The Cosine comparability ascertains the similitude of

two vectors as a cosine of the edge of two vectors.

The Cosine comparability can be determined as

pursues where ASCII codes are utilized as a number.

Like The Hamming distance, when the size of the

two strings isn't equivalent, invalid characters are

added to the shorter string. At long last, to ascertain

the distance, 1-Cosine comparability is utilized.

F. LOCALITY-SENSITIVE HASHING (LSH)

LHS [24] is a method that can be utilized as a quick

estimation of the distance between two strings. The

essential thought is to hash strings to such an extent

that comparative strings are mapped into an

equivalent hash code with a high likelihood.

Random projections are center components used to

outline input information to an esteem. In this paper,

we utilized a sort of random projection that is

utilized to gauge cosine distances. This projection is

characterized as

Where v is the information vector, x is a random

vector produced from a Gaussian distribution, and h

x (v) is a bit speaking to the area of v contrasted with

x. P random projections are utilized to build a hash

esteem where it demonstrates the area of the

information vector contrasted with the P random

vectors. Therefore, we have P bits as a hash esteem;

P=32 is utilized in this exploration.

At long last, the Hamming distance is utilized

between two hash bit strings which prompts an

estimation of the cosine distance of the first strings.

LSH improves the runtime request as the Hamming

distance between two 32 bit streams is autonomous

of the sizes of the strings. A far reaching runtime

request investigation is exhibited in the following

area.

Cosine and LSH distances are normally standardized

against the length of the strings and subsequently,

we don't have to standardize them. Be that as it may,

the other talked about distances are not normally

standardized. To standardize them, the outcome is

partitioned by Length(Str1)+Length(Str2).

VI. CONCLUSION

In this paper, black-box string test case generation is

examined. Two objectives are acquainted with

produce viable string test cases. The principal

objective controls the decent variety of the test cases

inside a test set. As indicated by different

observational examinations, blames as a rule happen

in blunder precious stones or disappointment locales.

Subsequently, controlling the decent variety of the

test cases is an important part of black-box test case

generation. The second objective is in charge of

controlling the length distribution of the string test

cases. The Benford distribution is utilized as an

objective distribution. In like manner, a

Kolmogorov– Smirnov test is used to develop the

wellness work. At the point when the two objectives

are enforced, utilizing a multi-objective

advancement strategy, prevalent test cases are

created.

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 667

VII. REFERENCES

[1] P. E. Ammann and J. C. Knight, “Data diversity: an

approach to software fault tolerance,” Comput. IEEE

Trans., vol. 37, no. 4, pp. 418–425, Apr. 1988.

[2] G. B. Finelli, “NASA Software failure characterization

experiments,” Reliab. Eng. Syst. Saf., vol. 32, no. 1–2,

pp. 155–169, 1991.

[3] L. J. White and E. I. Cohen, “A Domain Strategy for

Computer Program Testing,” Softw. Eng. IEEE Trans.,

vol. SE-6, no. 3, pp. 247–257, May 1980.

[4] P. G. Bishop, “The variation of software survival time

for different operational input profiles (or why you

can wait a long time for a big bug to fail),” in Fault-

Tolerant Computing, 1993. FTCS-23. Digest of

Papers., The Twenty-Third International Symposium

on, 1993, pp. 98–107.

[5] C. Schneckenburger and J. Mayer, “Towards the

determination of typical failure patterns,” in Fourth

international workshop on Software quality

assurance: in conjunction with the 6th ESEC/FSE joint

meeting, 2007, pp. 90–93.

[6] T. Y. Chen, T. H. Tse, and Y. T. Yu, “Proportional

sampling strategy: a compendium and some insights,”

J. Syst. Softw., vol. 58, no. 1, pp. 65–81, 2001.

[7] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive

Random Testing,” in Advances in Computer Science -

ASIAN 2004, vol. 3321, M. Maher, Ed. Springer Berlin

/ Heidelberg, 2005, pp. 3156–3157.

[8] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer,

“ARTOO: Adaptive Random Testing for Object-

Oriented Software,” in Software Engineering, 2008.

ICSE ’08. ACM/IEEE 30th International Conference

on, 2008, pp. 71–80.

[9] J. Mayer and C. Schneckenburger, “An empirical

analysis and comparison of random testing

techniques,” in Proceedings of the 2006 ACM/IEEE

international symposium on Empirical software

engineering, 2006, pp. 105–114.

[10] C. Durtschi, W. Hillison, and C. Pacini, “The effective

use of Benford’s law to assist in detecting fraud in

accounting data,” J. forensic Account., vol. 5, no. 1,

pp. 17–34, 2004.

[11] H. Hemmati, A. Arcuri, and L. Briand, “Achieving

Scalable Model-based Testing Through Test Case

Diversity,” ACM Trans. Softw. Eng. Methodol., vol.

22, no. 1, pp. 6:1–6:42, Mar. 2013.

[12] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran,

“Prioritizing test cases with string distances,” Autom.

Softw. Eng., vol. 19, no. 1, pp. 65–95, 2012.

[13] D. Whitley, “A genetic algorithm tutorial,” Stat.

Comput., vol. 4, no. 2, pp. 65–85, 1994.

[14] M. Harman and B. F. Jones, “Search-based software

engineering,” Inf. Softw. Technol., vol. 43, no. 14, pp.

833–839, 2001.

[15] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-

Walawege, “A Systematic Review of the Application

and Empirical Investigation of Search-Based Test Case

Generation,” Softw. Eng. IEEE Trans., vol. 36, no. 6,

pp. 742–762, Nov. 2010.

