
 CSEIT1949198 | Published - 21 Dec 2019 | November-December-2019 [(4) 9 : 137-140]

International Conference on Innovative Research in Engineering, Management and Sciences

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 4 | Issue 9 | ISSN : 2456-3307

137

MoC++ Interpreter for the C++ Language
Moni Krithika S1, S. Shanmuga Priya2

Student1, Senior Assistant Professor2

Department of Computer Science Engineering, New Horizon College of Engineering, Outer Ring Road,

Marathalli, Bengaluru, Karnataka, India

ABSTRACT

MoC++ Interpreter is a novel project that directly executes source program/instructions written in C++

language without translating it into a machine code or object code. MoC++ maps input to output statement by

statement, where each instruction is thoroughly checked for syntax and semantic errors. MoC++ is an

efficient interpreter which has a well-developed error diagnostics system. MoC++ interpreter solves

complicated real – world problems by abstracting constructing the problem mathematically. MoC++

interprets a source code that adheres to a particular language specification that is C++, and can interpret

possibly thousand lines of code. MoC++ doesn’t alter the meaning of the original instruction being interpreted.

Keywords: Interpreter, C++ Language, Design, Developers, Students

I. INTRODUCTION

MoC++ interpreter is a novel project that directly executes a source program/instruction written in

C++ language without translating it into machine code or object code. MoC++ maps input to output

statement by statement, where each instruction is thoroughly checked for syntax and semantic

errors. MoC++ is an efficient interpreter which has a well-developed error diagnostics system.

Figure 1: MoC++ Interpreter

MoC++ interpreter solves complicated real-world problems by abstracting constructing the problem

mathematically. The mathematical modeling that MoC++ interpreter follows is:-

• Analyses a problem statement.

• Construct mathematical abstraction capturing key characteristics of the problem.

• Find an appropriate mathematical technique to provide a solution.

http://ijsrcseit.com/
http://ijsrcseit.com/

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 138

MoC++ interprets a source code that adheres to a particular language specification that is C++, and

can interpret possibly thousand lines of code. MoC++ doesn’t alter the meaning of the original

instruction being interpreted.

The rest of the paper is organized as follows: Section 2 discusses about analysis and design, Section 3

is about the algorithm/pseudo code, Section 4 gives the conclusion.

II. ANALYSIS AND DESIGN

A. OBJECTIVES OF THE PROJECT

The goal of MoC++ interpreter is to translate a source program in a high-level language (C++) to the

output directly without converting it into machine code. MoC++ Interpreter executes a source

program statement by statement, outputs the solution in an easy to understand format, and provides

an environment for efficient debugging of the program. MoC++ parses the source code and performs

its behaviour directly. MoC++ implements self-modifying code hence it forms a base for artificial

intelligence and machine learning research. MoC++ acts as an emulator for running computer

software written for old languages which don’t have a present day compiler to run source programs

written in them.

III. ALGORITHM / PSUEDO CODE

A. CONCEPTUAL DESIGN

The conceptual design of MoC++ is a high level view of its software design and architecture.

Conceptual design of MoC++ details regarding the primary components that make up the project. It

includes the organization of the project and its interaction and interconnection with other

components of the Mo C++ system. Conceptual design does not speak about the implementation

technique of these components but provides a platform for thorough examination and

understanding of the components. MoC++ consists of front end and back end functions. In the

initial interpreting stage the front end of MoC++ helps in reading the source code. The primary

components of MoC++ front end are the Source class, Scanner class, Token class, Parser class.

The Source class gets the file name from the user using the getfilename() and validates if the

command and the file name entered by the user is correct. The Scanner class reads the source file or

source program statement by statement using the get_token() and calls the extract_ token() to

extract each token are divide the statement into several parts. The Token class returns the current

token to the Parser class by using the current token of function.

The Parser class is the master that controls the entire translation process in the front end. It controls

the entire process by owning the Token class, indirectly owning the Scanner class hence having

indirect access to the Source class. The Parser class deciphers the token type and evaluates its

characteristics by using the decipher() function. The result of the decipher()

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 139

Function determines whether the Parser class has to evaluate a key word using eval_key() function

or evaluate an expression using the eval_exp() function. The Intermediate tier performs the second

translation stage where the symbol table and the stack play an important role. This provides an

interface for smooth, fast and efficient execution of the program at the Back End. The symbol table

is generated using a SymbolTable class where createtable() function generates the initial template of

the table. The variables and their values can be stored in the table with the insert() function, and

their values updated using the update().

The search() function is used to search for a variable during expression evaluation. The stack is

implemented using the Stack class. The stack data structure helps in expression evaluation. The

Back end is the most important phase of an instruction execution where the interpreter evaluates,

validates the instruction and outputs the result. The interpreter Back End consists of an executor

which reads the symbol table and executes the source code.

Figure 2: Conceptual Diagram

B. ALGORITHM

Step 1: Get the file name

Step 2: Read the file statement by statement till the end of the file. Step 3: Extract token by token

from the read statement

Step 4: Decipher the token extracted and identify the token type and take the appropriate action.

Step 5: If the extracted token is a keyword then evaluate the keyword accordingly

Step 6: If the extracted token is an expression then evaluate the expression using an appropriate

function call

Step 7: Repeat the Steps 2 to 6 until the entire file is parsed.

Volume 4, Issue 9, November-December-2019 | www.ijsrcseit.com 140

C. CLASS DIAGRAM

Class diagram shows the relationship, interconnection and dependency of one class on another

class.

MoC++ has six classes where one class inherits from another class using the Hybrid inheritance

technique.

Figure 3: Class Diagram

IV. CONCLUSION

The goal of MoC++ is to translate a source program

in a high-level language to the output directly

without converting it into machine code. MoC++

provides the power of Python programming and Java

programming in C++, where efficiency, garbage

value collection, and many other best features of

these programming languages are incorporated in it.

MoC++ Interpreter executes a source program

statement by statement, outputs the solution in an

easy to understand format, and provides an

environment for efficient debugging of the program.

MoC++ parses the source code and performs its

behaviour directly. MoC++ implements self-

modifying code, hence, it forms a base for artificial

intelligence and machine learning research. The

abbreviation of MoC++ is derived from the first two

letters of the name of the author of this unique

interpreter: Moni Krithika. The author

authoritatively works on C++, the generally accepted

and implemented Computer Language; and hence

the name MoC++, is most suitable for this interpreter

program. This interpreter is being developed further

for its higher accuracy for debugging, superior

reading capacity and other valuable and user-

friendly features.

II. REFERENCES

[1]. Alfred Aho, S. Monica Lam, Ravi Sethi, and

Jeffrey D. Ullman, “Compilers: principles,

techniques and tool,” 2nd ed., India: Pearson

India Education Services Pvt. Ltd, 2014.

[2]. E. Balaguruswamy, “Object oriented

programming with c++, 6th ed., India:

McGraw Hill Education Pvt. Ltd., 5th

Reprint 2015.

[3]. Paul Deitel, and Harvey Deitel, “C++ how to

program,” 10th ed., India: Pearson India

Education Services Pvt. Ltd., 2017.

[4]. Ronald Mak, “Writing compiler and

interpreters: a software engineering

approach,” 3rd Indian ed., Indianapolis US:

Wiley Publishing Inc., 2009.

[5]. Herbert Schildt, “The complete reference

c++,” 4th ed., India: McGraw Hill Education

Pvt. Ltd., 2003, 37th Reprint 2016.

