
 CSEIT1951117 | Received : 25 Feb 2019 | Accepted : 04 March 2019 | March-April -2019 [5 (2) : 13-20]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 2 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT1951117

13

The Transactional Memory
V. M. Dhivya Shri1, Mrs. K. Reshma2

1B.Sc (Computer Technology), Department of Information and Computer Technology, Sri Krishna Adithya

College of Arts and Science, Coimbatore, Tamil Nadu, India
2Assistant Professor, Department of Information & Computer Technology, Sri Krishna Adithya College of Arts

and Science, Coimbatore, Tamil Nadu, India

ABSTRACT

Transactional memory (TM) promises to simplify concurrent programming. Language-based constructs allow

programmers to denote atomic regions declaratively. Its implementations operate by tracking loads and stores

to memory and by detecting concurrent conflicts. TM allows programmers to write simpler programs that are

composable and deadlock-freeThis essay presents remarkable similarities between transactional Memory and

garbage collection. The connections are fascinating in their own right, and they let us better stand one

technology by thinking about the corresponding issues for the other.

Keywords : Transactional Memory, Garbage Collection

I. INTRODUCTION

Transactional memory is currently one of the hottest

topics in computer-science research, having attracted

the focus of researchers in programming languages,

computer architecture, and parallel programming, as

well as the attention of development groups at major

software and hardware companies. The fundamental

source of the excitement is the belief that by

replacing locks and condition variables with

transactions we can make it easier to write correct

and efficient shared-memory parallel programs.

Having made the semantics and implementation of

transactional memory a large piece of my research

agenda I believe it is crucial to ask why we believe

transactional memory is such a step forward. If the

reasons are shallow or marginal, then transactional

memory should probably just be a current fad, as

some critics think it is. If we cannot identify crisp

and precise reasons why transactions are

improvement over locks, then we are being

neither good scientists nor good engineers. The

purpose of this article is not to rehash excellent but

previously published examples where software

transactions provide an enormous benefit (though for

background they are briefly discussed), nor is it to

add some more examples to the litany. Rather, it is to

present a more general perspective that I have

developed over the last two years.

This article is designed to provide

a cogent starting point for that discussion. The

primary goal is to use our understanding of garbage

collection to better understanding of transactional

memory (and possibly vice-versa). The presentation

of the TM/GC analogy that follows will demonstrate

that the analogy is much deeper than, “here are two

technologies that make programming easier.”

However, it will not conclude that TM will make

concurrent programming as easy as sequential

programming with GC. Rather, it will lead us to the

balanced and obvious-once-you-say-it conclusion

that transactions make it easy to define critical

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT1951117

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

V. M. Dhivya Shri, Mrs. K. Reshma Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 13-20

 14

sections (which is a huge help in writing and

maintaining shared-memory programs) but provide

no help in identifying where a critical section should

begin or end (which remains an enormous challenge).

 I begin by providing a cursory review of memory

management, garbage collection,concurrency, and

transactional memory This non-analogical discussion

simply introduces relevant definitions for the two

sides and may leave you wondering how they could

possibly have much to do with each other. I then

present the core of the analogy, uncovering many

uncanny similarities even at a detailed level This

discussion can then be balanced with the primary

place the analogy does not hold, which is exactly the

essence of what makes concurrent programming

inherently more difficult no matter what

synchronization mechanisms are provided Having

completed the crux of the argument, I then provide

some additional context. First is a brief detour for an

analogous type-theoretic treatment of manual

memory management and locking, a prior focus of

my research that provides some backstory for how

the TM/GC analogy came to be. Second are some

conjectures one can make by pushing the analogy too

far finally, the conclusion describes the intended

effects of publishing this article.

II. BACKGROUND

A full introduction to garbage collection and

transactional memory is clearly beyond our scope

exist for GC and TM , so this section will just

introduce enough definitions to understand most of

the claims that follow and provide some motivation

for TM. Some readers may be able to skip much of

this section. For the sake of specificity, I will assume

programs are written in a modern object-oriented

language and interthread communication is via

mutable shared-memory. Much of the discussion

applies to other paradigms but less to communication

via message-passing.

Transactional Memory

The assumed concurrency model allows programmers

to create additional threads to execute code in

parallel with all the other threads.Pre-emptive

scheduling means a thread can be stopped at any

point so other threads can use one of the available

processors. Threads must communicate to coordinate

the computation they are completing together.

With shared memory, one thread can write to a field

of an object and another thread can then read the

value written. Shared memory and pre-emption are a

difficult combination so languages provide

synchronization mechanisms by which programmers

can prevent some thread inter leavings. For example,

mutual-exclusion locks have acquire and release

operations. If thread A invokes the acquire operation

on a lock that thread B has acquired but not yet

released, then thread A is blocked until A releases the

lock and B holds the lock. Incorrect locking protocols

can lead to races or deadlocks. Transactional memory

provides a synchronization mechanism that is easier-

to-use but harder-to-implement than locks. At its

simplest, it is just a new statement form atomic that

executes the statement s as though there is no

interleaved computation from other threads.

In principle,

s can include arbitrary code, but in practice systems

typically limit some operations, such as I/O, foreign-

function calls, or creating new threads. An explicit

abort statement lets programmers indicate the body

of the atomic block should be retried again later. For

example, a dequeue method for a synchronized queue

might be:

// block until an object is available.

// getNextObject fails if the queue is empty.

Object dequeue() {

atomic {

if(isEmpty())

abort;

return getNextObject();

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

V. M. Dhivya Shri, Mrs. K. Reshma Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 13-20

 15

}

}

TM implementations try to execute the atomic-block

Body. s concurrently with other computation,

implicitly aborting and retrying if a conflict is

detected. This is important for performance (not

stopping all other threads for each atomic block) and

fairness: if s runs too long, other threads must be

allowed to continue and the thread executing s

should retry the transaction. In a different shared-

memory state, s may complete quickly. Conflicts are

usually defined as memory conflicts: s and another

thread access the same memory and at least one

access is a write. The essence of a TM

implementation is two-fold: detecting conflicts and

ensuring all of a transaction’s updates to shared

memory appear to happen “at once”.

The distinction between weak- and strong-atomicity

refers to a system’s behavior when a memory access

not within the dynamic scope of an atomic block

conflicts with a concurrent access (by another thread)

within such a scope. Weak-atomicity systems can

violate a transaction’s isolation in this case, and can

produce much stranger program behaviour than is

generally appreciated Prohibiting memory conflicts

between parallel transactions is sometimes

unnecessarily conservative. For example, if two

transactions both use a unique-ID generator, they

may both increment a counter but there is no logical

conflict. Open nesting is a language construct

supporting such non conflict access. The statement

open{s} executes s within a

transaction, but

(1) accesses in s are not considered for conflict

detection and

(2) accesses in s are not undone if the transaction

aborts.

Obstruction-freedom is, roughly speaking, the

property that any transaction can continue even if all

other transactions are suspended. Some TM

implementations have this property and some do not;

its importance is fairly controversial Transactions are

a classic concept in databases and distributed systems.

Transactional support in hardware programming

languages and libraries had early advocates, with

recent interest beginning with Harris and Fraser’s

work for Java Approaches to implementing TM in

compilers, libraries, hardware

and software/hardware hybrids have been published,

and transactions are part of several next-generation

languages.

In general, TM advocates believe it is better than

locking because it has software-engineering benefits

avoiding locks’ difficulties and performance benefits

due to optimistic concurrency, transactions proceed

in parallel unless there are dynamic memory conflicts.

Several idioms where TM is superior have been given:

• It is easier to evolve software to include new

synchronized operations. For example, consider the

simple bankaccount class in Figure 1. If version 1 of

the software did not anticipate the need for a transfer

method, the self-locking approach makes sense.

Given this, modifying the software to support

transfer without potential races (see transfer_wrong1)

or deadlock (see transfer_wrong2) requires wide-

scale changes involving subtle lock-order protocols.

This issue arises in Java’s StringBuffer append method,

which is presumably why this method is not

guaranteed to be atomic .

• It is easier to mix fine-grained and coarse-grained

operations. For example, most hashtable operations

access only a small part of the table, but supporting

parallel insert and lookup operations while still

having a correctly synchronized “resize table”

operation is difficult with locks and trivial with TM.

• It is easier to write code that is efficient when

memoryconflicts are rare while remaining correct in

case they occur. For example, allowing parallel access

to both ends of a double-ended queue is difficult with

locks because there can be contention, but only when

the queue has fewer than two elements [39]. A

solution using TM is trivial.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

V. M. Dhivya Shri, Mrs. K. Reshma Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 13-20

 16

• With the addition of the “orelse” combinator [25],

in which atomic { s1 } orelse { s2 } tries s2 atomically

if s1 aborts (retrying the whole thing if s2 also aborts),

we can combine alternative atomic actions, such as

trying to dequeue from one of two synchronized

queues, blocking only if both are empty.

III. THE CORE ANALOGY

Without further ado, I now present the similarities

between transactional memory and garbage

collection, from the problems they solve, to the way

they solve them, to how poor programming practice

can nullify their advantages. The points in this

section are all technical in nature; any analogies

between the social processes behind the technologies

of GC and TM .

TM all at once to make sure they are accurate and

relevant. Then read the descriptions by interleaving

sentences (or even phrases) to appreciate that the

structure is identical with the difference being

primarily the substitution of a few nouns. programs

that manually manage mutual-exclusion locks, the

programmer uses subtle whole-program protocols to

avoid errors. One of the simpler approaches associates

each data object with a lock and holds the lock when

accessing the data. To avoid deadlock, it is sufficient

to enforce a partial order on the order a thread

acquires locks, but in practice this requirement is too

burdensome. Sharing locks among objects reduces the

number of locks but may reduce parallelism.

Unfortunately, concurrency protocols are non-

modular: Callers and callees must know what data

the other may access to avoid releasing locks still

needed or acquiring locks that could make threads

deadlocked. A small change for

example, a new function that must update two

thread-shared objects atomically with respect to

other threads — may require wide-scale changes or

introduce bugs. In essence, concurrent programming

involves nonlocal properties: Correctness requires

knowing what data concurrently executing

computation will access. One must reason about how

data is used across threads to determine when to

acquire a lock. If a program change affects when an

object is used concurrently, the program’s

synchronization protocol may become wrong or

inefficient. invariants, often with the support of the

compiler and/or hardware. As examples, header

words may identify which fields hold pointers and a

generational collector may assume there are no

unknown pointers from “mature” objects to “young”

objects. The whole-program protocols necessary for

GC are most easily implemented in some

combination of the compiler (particularly for read

and/or write barriers) and the runtime system

(including hardware) because we can localize the

implementation of the protocols. Put another way,

the difficulty of implementation does not increase

with the size of the source program. In theory,

garbage collection can improve performance by

increasing spatial locality (due to object-relocation),

but in practice we pay a moderate performance cost

for software engineering benefits. TM takes the

subtle whole-program protocols sufficient to avoid

races and deadlock and moves them into the language

implementation. As such, they can be implemented

“once and for all” by experts focused only on their

correct and efficient implementation. Programmers

specify only what must be performed atomically (as

viewed from other threads), relying on the

implementation to be correct (no atomicity violations)

and efficient (reasonably parallel, particularly when

transactions do not contend for data).Note the

transactional-memory implementation does maintain

subtle whole-program invariants, often with the

support of the compiler and/or hardware. As

examples, header words may hold version numbers

and systems optimizing for thread-local data may

assume there are no pointers from thread-shared

objects to thread-local objects.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

V. M. Dhivya Shri, Mrs. K. Reshma Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 13-20

 17

The whole-program protocols necessary for TM are

most easily implemented in some combination of the

compiler (particularly for read and/or write barriers)

and the runtime system (including hardware) because

we can localize the implementation of the protocols.

Put another way, the difficulty of implementation

does not increase with the size of the source program.

In theory, transactional memory can improve

performance by increasing parallelism (due to

optimistic concurrency), but in practice we may pay

a moderate performance cost for software-

engineering benefits. space for time is a bad

performance decision or where heap-allocated data

lifetime follows an idiom not closely approximated

by reachability. Language features such as weak

pointers allow reachable memory to be reclaimed,

but using such features correctly is best left to experts

or easily recognized situations such as a software

cache. Recognizing that GC may not always be

appropriate, languages can complement it with

support for other idioms. In the extreme,

programmers can code manual memory management

on top of garbage collection, destroying the

advantages of garbage collection. More efficient

implementations (e.g.,using a free list) are

straightforward extensions. A programmer

can then treat mallocT as the way to get fresh T

objects, but an object passed to freeT may be returned

by mallocT, reintroducing the difficulties of dangling

pointers. In practice, we can expect less extreme

idioms that still introduce application-level buffers

for frequently used objects. TM is probably not a

natural match for all parts of all applications

throw new OutOfMemoryError();

 //could resize buffer

}

void freeT(T t) {

for(int i=0; i < 1000; ++i)

if(buffer[i]==t) available[i] = true;

}

}

class Lock {

boolean held = false;

void acquire() {

while(true)

atomic {

if(!held) {

held=true;

return;

}

}

}

void release() {

atomic { held = false; }

}

}

IV. PROGRESS GUARANTEES

Most garbage collectors do not make real-time

guarantees. Providing such worst-case guarantees can

incur substantial extra cost in the expected case, so

real-time collection is typically eschewed unless an

application needs it.

 The key complication is continuing to make progress

with collection while the program could be

performing arbitrary operations on the reachable

objects the collector is analysing, and continuing to

make progress with any transaction while another

thread could be suspended after having accessed any

of the objects the transaction is accessing.

Some implementations of transactional memory do

not make obstruction-freedom guarantees. Providing

such worst case guarantees can incur substantial extra

cost in the expected case, so obstruction-freedom

should perhaps be eschewed

unless an application needs it.

V. A BRIEF DIGRESSION FOR TYPES

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

V. M. Dhivya Shri, Mrs. K. Reshma Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 13-20

 18

It turns out GC and TM are not the only solutions to

memory management and concurrency that enjoy

remarkable similarities.The type systems underlying

statically checked languages for region-based

memory management and lock-based data-race

prevention are essentially identically structured

type-and-effect systems. In adapting work on both to

the Cyclone programming language, I was able to

exploit this similarity to provide a simpler and more

regular analogy.

In region-based memory management, we can have

these to use_ region or on free_ region. The key to

type soundness (no dangling-pointer dereferences) is

using fresh type variables to ensure every region has

a type distinct from every other region. The key to

expressiveness is parametric

polymorphism so that methods can be parameterized

over the regions in which the data they access resides.

A computation’s effect is the set of regions that may

need to be live while the computation is performed.

In lock-based data-race prevention, we can have

these the process of widespread adoption — and in

general technology adoption is accelerating—I think

we should be prepared for the TM lag time to be

longer than anyone expects. This in no way reduces

the importance of TM research.

 Mandatory GC is usually sufficient despite its

approximations.

As already described, GC essentially relies on the

approximation that reachable objects may be live,

and this approximation can make an arbitrary

amount of memory live arbitrarily longer. For

programmers to avoid suffering from this, unsafe

languages can provide a “back-door” for explicit

memory deallocation and safe languages can provide

features like weak pointers. In practice, these features

are sometimes necessary, but plenty of practical

systems have been built that rely exclusively on

reachability for determining liveness. Moreover, the

exact definition of “what is reachable” which in

theory is necessary for reasoning about program

performance is typically left unspecified and compiler

optimizations are allowed to subtly change

reachability information.

I have argued the TM analogue of the reachability

approximation is memory-conflict approximation

assuming that two transactions accessing the same

memory (where at least one access is a write) cannot

proceed in parallel. The “back-door” for letting

programmers avoid this approximation is open-

nesting. The question then is whether open-nesting is

so important that it must be addressed as a primary

obstacle to developing transactional-memory

implementations.

The limitations of not having open-nesting and the

situations where it is the best solution may be few,

just as many programmers in garbage-collected

languages never bother with weak pointers.

Moreover, the exact definition of “what is a memory

conflict” as well as related issues of how conflicts are

arbitrated (e.g., notions of fairness) may not prove

important for most programs.

VI. CONCLUSION

A good analogy can provoke thought, provide

perspective guide research, and promote an idea. An

analogy need not be valid science (i.e., a proof) nor a

complete and total correspondence. Rather, it can

serve to describe concisely (if imperfectly) one idea

in terms of another better-known idea. Humans often

learn and understand via analogies.

In so doing, I have made a case for transactional

memory that I personally find quite compelling,

which is why I continue to do research on the topic.

To restate it succinctly, by moving mutual-exclusion

protocols into the language implementation (any

combination of compiler, run-time system, and

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

V. M. Dhivya Shri, Mrs. K. Reshma Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 13-20

 19

hardware), make it easier to write and maintain

shared-memory concurrent programs in a more

modular fashion. This argument is not the only one

that has been put forth in favor of transactional

memory; We still need better tools and

methodologies to help programmers determine

where transactions should begin and end. Delimiting

transactions is the essential difficulty of concurrent

programming, and making transactions a language

primitive does not change this.

For me, the most important conclusion arising from

the analogy is that GC and TM rely on simple and

usually-good enough approximations (namely,

reachability and memory conflicts) that are subject to

false-sharing problems. This fact can inform how we

teach programmers to use TM (and GC) effectively

and can guide research into reducing the

approximations.

Indeed, the primary intended effect of this

presentation is to incite such thoughts in others,

whether readers agree or more interestingly disagree

with the analogy. In particular :

✓ If you believe the GC/TM analogy is useful, can

you use it to advance our understanding of TM or

GC? For example, is there a TM analogue of

generational collection?

This question is crucial if one ascribes to the

interpretation of history in which GC was less

practical prior to generational collection. More

abstractly, is there a unified theory of TM as beautiful

is Bacon et al ’s unified theory of GC in which tracing

and automatic reference counting are algorithmic

duals.

✓ If you believe the GC/TM analogy is flawed or

deemphasizes some crucial aspect of TM, can you

identify why?

I have essentially ignored issues of fairness

contention management, which some may feel are

essential aspects of TM. Does considering these issues

fundamentally change what we should conclude.

VII. REFERENCES

[1]. M. Abadi, C. Flanagan, and S. N. Freund. Types

for safe locking: Static race detection for Java.

ACM Transactions on Programming Languages

and Systems, 28(2), 2006.

[2]. C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C.

E. Leiserson, and S. Lie. Unbounded

transactional memory. In 11th International

Symposium on High-Performance Computer

Architecture, 2005.

[3]. A.-R. Adl-Tabatabai, B. Lewis, V. Menon, B. R.

Murphy, B. Saha, and T. Shpeisman. Compiler

and runtime support for efficient software

transactional memory. In ACM Conference on

Programming Language Design and

Implementation, 2006.

[4]. E. Allen, D. Chase, J. Hallet, V. Luchangco, J.-

W. Maessen,S. Ryu, G. L. Steele Jr., and S.

Tobin-Hochstadt. The Fortress language

specification, version 1.0_, Mar.

2007.http://research.sun.com/projects/plrg/Publ

ications/fortress1.0beta.pdf.

[5]. S. M. Blackburn, P. Cheng, and K. S. McKinley.

Myths and realities: The performance impact of

garbage collection. In SIGMETRICS -

Proceedings of the International Conference on

Measurements and Modeling of Computer

Systems, 2004.

[6]. D. F. Bacon, P. Cheng, and V. T. Rajan. A

unified theory of garbage collection. In ACM

Conference on Object-Oriented Programming,

Systems, Languages, and Applications, 2004.

[7]. G. Bellella, editor. The Real-Time Specification

for Java.Addison-Wesley, 2000.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

V. M. Dhivya Shri, Mrs. K. Reshma Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 13-20

 20

[8]. C. Blundell, E. C. Lewis, and M. Martin.

Subtleties of transactional memory atomicity

semantics. Computer Architecture Letters, 5(2),

2006.

[9]. P. Charles, C. Grothoff, V. Saraswat, C.

Donawa, A. Kielstra, K. Ebcioglu, C. von Praun,

and V. Sarkar. X10: An objectoriented approach

to non-uniform cluster computing.

[10]. B. D. Carlstrom, J. Chung, A. McDonald, H.

Chafi, C. Kozyrakis, and K. Olukotun. The

Atomos transactional Programming language.

In ACM Conference on Programming Language

Design and Implementation, 2006.

Cite this article as :

V. M. Dhivya Shri, Mrs. K. Reshma, "The

Transactional Memory", International Journal of

Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 5 Issue 2, pp. 13-20, March-April

2019. Available at doi :

https://doi.org/10.32628/CSEIT1951117

Journal URL : http://ijsrcseit.com/CSEIT1951117

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT1951117
http://ijsrcseit.com/CSEIT1951117

