
CSEIT1952132 | Received : 08 March 2019 | Accepted : 20 March 2019 | March-April -2019 [5 (2) : 558-563]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 2 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/IJSRCSEIT

558

Software Psuedo Random Number Generators to Hardware True Random

Number Generators: a transition in Data-Security
Shreenabh Agrawal

Class X A, The Chanda Devi Saraf School, Nagpur, Maharashtra, India

ABSTRACT

Objective of research: To understand the basic issues in data security during vital transactions related to money

or critical data in e-business and to statistically test the efficiency of PRNG –Pseudo Random Number

Generators versus TRNG- True Random Number Generators used for Cryptography.

Experimental set up: A prototype of TRNG was designed. The Schematic component architecture of the

prototype, the number generation code and the C Inspired Algorithm have been presented. 5000 numbers were

generated using it. Another set of 5000 numbers was generated using an online PRNG.

Statistical testing: The numbers thus generated were tested by Kolmogorov Smirnov Z test for uniformity and

Runs Test for Median and Mean for randomness. The results were displayed in tabular format.

Results: The statistical analysis showed that the performance of TRNG was better than PRNG for both

uniformity and randomness.

Keywords : Randomness, PRNG, TRNG, Cryptography, Kolmogorov Smirnov Z test, Runs Test

I. INTRODUCTION

With a major shift of traditional industry to the e-

industry and major industry giants shifting online for

business, the concern for data security is a major one

(Buchanan, 2017). The entire business loop from the

industry to the customer and back is at risk of data

leakage and manipulation due to cyber attacks. To be

able to survive such cyber attacks, the random

numbers used for cryptographic functions have to be

truly random such that they cannot be deciphered

either by forward or backward tracking. There has

been a lot of research in this area of random number

generation since last few decades. Researchers have

come a long way from mathematical sequence

numbers to quantum random numbers. Earlier, most

of the requirements were handled using software

generated random numbers but due to their security

concerns hardware random number generators came

into being. They used either physical, chemical or

environmental phenomena for generating their

output. This was termed as ‘Entropy Source’. As the

seed based pseudo random numbers had a high risk of

getting compromised, true random number

generation became the need of the hour.

II. METHODS AND MATERIAL

PRNG (Pseudo Random Number Generator) vs

TRNG (True Random Number Generator):

Random numbers used in Cryptography can be

generated by two common methods: by using a

Pseudo Random Number Generator (PRNG) or by a

True Random Number Generator (TRNG). PRNGs

are algorithm based random number generators and

are software based while TRNGs are generally

hardware based. PRNGs are useful for their speed

while TRNGs are useful for their randomness. As

discussed, PRNGs use an algorithm to generate

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/IJSRCSEIT

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Shreenabh Agrawal et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 558-563

 559

random numbers based on a seed. A seed is the first

input given to an algorithm which the algorithm uses

to generate random numbers which can be given

manually or decided by the computer. Due to this, in

a PRNG, after some numbers, the sequence starts

repeating. Another drawback of PRNGs is that for a

particular seed and particular algorithm, only certain

numbers are generated while many numbers are

never generated .

To overcome such discrepancies, another method of

generating random numbers is by using TRNGs. They

analyse some physical phenomenon or artificial

disturbances called 'noise' and generate numbers

accordingly. They are capable of generating high

quality random numbers. A simple example of TRNG

can be a dice rolling machine or a shuffled card

reader machine. At times, it can be very difficult to

construct a highly efficient TRNG and statisticians

often resort to complex phenomena like radioactive

decay to generate such numbers. Some commonly

available TRNG’s and their operating principles are

mentioned in Table 1 below:

Table 1: True Random Number Generators

Model Year Operating principle

QRBG121 2005 Photoelectric effect

Quantis-USB 2006 Beam splitter

Entropy Key

2009 Avalanche noise

Quantis-PCIe-16M 2010 Beam splitter

PQ32MU 2013 Shot noise

Ivy Bridge-EP

2013 Johnson–Nyquist noise

Alea II 2014
Reverse biased

semiconductor junction

TrueRNG v2

2014 Zener noise

Infinite Noise 2014 Johnson–Nyquist noise

BitBabbler White

2015

Electromagnetic

interference

TRNG 2015

Registerless linear-

feedback shift registers

OneRNG 2015

Optional atmospheric

noise

TrueRNG Pro

2015
Reverse-biased

semiconductor junction

ChaosKey 1.0 2016

Reverse biased

semiconductor junction

PQ4000KS 2016 Shot noise

TrueRNG v3

2016
Reverse-biased

semiconductor junction

SwiftRNG Pro 2018

Reverse biased Zener

diodes

Source:

https://en.wikipedia.org/wiki/Comparison_of_hardwa

re_random_number_generators

The following basic differences are reported related

to PRNGs and TRNGs:

Table 2: PRNG vs TRNG

Description PRNG TRNG

True Randomness No Yes

Equal Probability of All Numbers No Yes

Non-degradable Randomness Yes No

Cost-effective Yes No

Portable Yes No

Decentralized Yes No

Easy to use Yes No

Randomness on demand service Yes Yes

Problem of artificial whitening Yes No

Insecure delivery of numbers Yes No

Risk of breach of secrecy Yes No

Data security issues related to PRNGs:

The Guardian reports," 'Computer whiz' rigged Vegas

lottery number generator to produce predictable

numbers a couple of times a year thus earning 16.5

million USD!" The root cause of incidents like these is

the inability of PRNGs to produce Truly Random

Numbers. Another such incident as reported by Dr.

Dobb's Journal dates back to 1996 when two

researchers, broke Netscape's SSL Encryption keys

thus giving a major setback to millions of users who

relied on Netscape and RSA Security (a major agency

which used this service) for encryption. This

http://www.ijsrcseit.com/
https://en.wikipedia.org/wiki/Photoelectric_effect
https://en.wikipedia.org/wiki/Beam_splitter
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators#cite_note-eKey-43
https://en.wikipedia.org/wiki/Avalanche_diode#RF_noise_generation
https://en.wikipedia.org/wiki/Beam_splitter
https://en.wikipedia.org/wiki/Shot_noise
https://en.wikipedia.org/wiki/List_of_Intel_Core_i7_microprocessors#.22Ivy_Bridge-E.22_.2822_nm.29
https://en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise
https://en.wikipedia.org/wiki/P-n_junction#Reverse_bias
https://en.wikipedia.org/wiki/P-n_junction#Reverse_bias
http://ubld.it/products/truerng-hardware-random-number-generator/
https://en.wikipedia.org/wiki/Noise_generator
https://en.wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators#cite_note-bb_white-12
http://ubld.it/products/truerngpro
https://en.wikipedia.org/wiki/Noise_generator
https://en.wikipedia.org/wiki/Noise_generator
https://en.wikipedia.org/wiki/Shot_noise
http://ubld.it/truerng_v3
https://en.wikipedia.org/wiki/Noise_generator
https://en.wikipedia.org/wiki/Noise_generator
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators
https://en.wikipedia.org/wiki/Comparison_of_hardware_random_number_generators

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Shreenabh Agrawal et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 558-563

 560

loophole was discovered by them after discovering

that the time of the day and the process IDs were

used to generate the random keys. In November 2007,

Dorrendorf et al. from the Hebrew University of

Jerusalem and University of Haifa published a paper

which presented serious weaknesses in Microsoft's

approach at the time. The paper's conclusions were

based on disassembly of the code in Windows 2000,

but according to Microsoft applied to Windows XP as

well. A discrepancy was observed in the safety

feature of the random numbers by Allen (2008) in his

study. The picture (1) below is a bitmap image of the

random numbers which are produced by the PHP

rand () function in Microsoft Windows. It shows a

clear connection and repetition of the numbers

generated by the PRNG.

Picture 1: Bitmap image of Random Numbers

A similar flaw was also discovered in Play Station 3.

In December 2010, a group calling itself 'fail0verflow'

announced recovery of the private key used by Sony

to sign software for the PlayStation 3 game console.

The attack was made possible because Sony failed to

generate a new random nonce for each signature

(Borza, 2011). A more recent setback was uncovered

involving Bitcoins- the e-currency. In August 2013, it

was revealed that bugs in the Java class

SecureRandom had flaws in implementations of

Bitcoin on Android. When this occurred the private

key could be recovered, in turn allowing stealing

Bitcoins from the containing wallet (Chirgwin,2013).

Experimental Method to empirically test PRNG vs

TRNG:

To test the propositions of researchers in support of

TRNG, a prototype of a TRNG was designed. The

prototype comprised of 3 components -an entropy

source that produces random inputs from a non

deterministic hardware process at around three 3-

digit inputs per second , an Arduino board that uses a

C inspired program to distil the triplet of 3 digit

random inputs into a triplet of two digit high quality

random inputs combining them algebraically into a 6

digit high quality nondeterministic random number

and a serial monitor that displays the output for the

end user.

Figure 1: Schematic Component Architecture and

Process

Entropy source provides a serial stream of entropic

data in the form of 0 - 1024 voltage level sequences.

The entropy source runs on an independent circuit

and uses artificial noise generated by random

interruption in light intensity due to moving soft

balls. The entropy source is powered by an external

power supply to run on to ensure there is no

electronic connection between it and other core logic.

Random inputs are passed to the Arduino board for

further processing. The C inspired program housed in

an Arduino Nano board deletes the first digit of the

three digit random input from entropy source and

converts them into high quality two digits by

removing the digit which was susceptible to

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Shreenabh Agrawal et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 558-563

 561

prediction due to its narrow range of possible values.

The triplets of two digit raw entropy samples

generated by the entropy source are thus reduced to a

single 6 digit high quality nondeterministic random

number.

Figure 2: Number Generation Code

Algorithm designed using C inspired program on

Arduino Board :

int LDR1 = A0;

int LDR2 = A1;

int LDR3 = A2;

int LDR1Value = 0;

int LDR2Value = 0;

int LDR3Value = 0;

int OTP1;

int OTP2;

int OTP3;

long int FinallOTP;

void setup() {

 Serial.begin(9600);

 pinMode(LDR1, INPUT);

 pinMode(LDR2, INPUT);

 pinMode(LDR3, INPUT);

}

void loop() {

 LDR1Value = analogRead(LDR1);

 LDR2Value = analogRead(LDR2);

 LDR3Value = analogRead(LDR3);

 DigitfromOTP1();

 DigitfromOTP2();

 DigitfromOTP3();

 FinalOTP();

 Serial.println(FinallOTP);

 delay(1000);

}

void DigitfromOTP1() {// Deletes

hundred’s digit from LDR1 input

 if(LDR1Value<100) {

 OTP1=LDR1Value;

 }

 else if(LDR1Value>100 && LDR1Value<200)

{

 OTP1=LDR1Value-100;

 }

 else if(LDR1Value>200 && LDR1Value<300)

{

 OTP1=LDR1Value-200;

 }

 else if(LDR1Value>300 && LDR1Value<400)

{

 OTP1=LDR1Value-300;

 }

 else if(LDR1Value>400 && LDR1Value<500)

{

 OTP1=LDR1Value-400;

 }

 else if(LDR1Value>500 && LDR1Value<600)

{

 OTP1=LDR1Value-500;

 }

 else if(LDR1Value>600 && LDR1Value<700)

{

 OTP1=LDR1Value-600;

 }

 else if(LDR1Value>700 && LDR1Value<800)

{

 OTP1=LDR1Value-700;

 }

 else if(LDR1Value>800 && LDR1Value<900)

{

 OTP1=LDR1Value-800;

 }

 else if(LDR1Value>900 && LDR1Value<1000)

{

 OTP1=LDR1Value-900;

 }

 else if(LDR1Value>1000 &&

LDR1Value<1024) {

 OTP1=LDR1Value-1000;

 }

}

void DigitfromOTP2() {// Deletes

hundred’s digit from input of LDR2

 if(LDR2Value<100) {

 OTP2=LDR2Value;

 }

 else if(LDR2Value>100 && LDR2Value<200)

{

 OTP2=LDR2Value-100;

 }

 else if(LDR2Value>200 && LDR2Value<300)

{

 OTP2=LDR2Value-200;

 }

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Shreenabh Agrawal et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 558-563

 562

 else if(LDR2Value>300 && LDR2Value<400)

{

 OTP2=LDR2Value-300;

 }

 else if(LDR2Value>400 && LDR2Value<500)

{

 OTP2=LDR2Value-400;

 }

 else if(LDR2Value>500 && LDR2Value<600)

{

 OTP2=LDR2Value-500;

 }

 else if(LDR2Value>600 && LDR2Value<700)

{

 OTP2=LDR2Value-600;

 }

 else if(LDR2Value>700 && LDR2Value<800)

{

 OTP2=LDR2Value-700;

 }

 else if(LDR2Value>800 && LDR2Value<900)

{

 OTP2=LDR2Value-800;

 }

 else if(LDR2Value>900 && LDR2Value<1000)

{

 OTP2=LDR2Value-900;

 }

 else if(LDR2Value>1000 &&

LDR2Value<1024) {

 OTP2=LDR2Value-1000;

 }

}

void DigitfromOTP3() {// Deletes

hundred’s digit from input of LDR3

 if(LDR3Value<100) {

 OTP3=LDR3Value;

 }

 else if(LDR3Value>100 && LDR3Value<200)

{

 OTP3=LDR3Value-100;

 }

 else if(LDR3Value>200 && LDR3Value<300)

{

 OTP3=LDR3Value-200;

 }

 else if(LDR3Value>300 && LDR3Value<400)

{

 OTP3=LDR3Value-300;

 }

 else if(LDR3Value>400 && LDR3Value<500)

{

 OTP3=LDR3Value-400;

 }

 else if(LDR3Value>500 && LDR3Value<600)

{

 OTP3=LDR3Value-500;

 }

 else if(LDR3Value>600 && LDR3Value<700)

{

 OTP3=LDR3Value-600;

 }

 else if(LDR3Value>700 && LDR3Value<800)

{

 OTP3=LDR3Value-700;

 }

 else if(LDR3Value>800 && LDR3Value<900)

{

 OTP3=LDR3Value-800;

 }

 else if(LDR3Value>900 && LDR3Value<1000)

{

 OTP3=LDR3Value-900;

 }

 else if(LDR3Value>1000 &&

LDR3Value<1024) {

 OTP3=LDR3Value-1000;

 }

}

void FinalOTP() {

 int finalunit;

 finalunit = OTP1;

 int tth=100;

 int finaltth;

 finaltth=OTP2*tth;

 long int htl = 10000;

 long int finalhtl;

 finalhtl=OTP3*htl;

 FinalOTP=finalhtl+finaltth+finalunit;

 }

5000 numbers were generated using this TRNG

prototype. Another 5000 numbers were generated

with the help of an online PRNG. The numbers were

tested statistically using Kolmogorov Smirnov Z test

for uniformity and Runs test of Means and Median

for randomness.

III. RESULTS AND DISCUSSION

Statistical Analysis:

a) Kolmogorov Smirnov Z test for testing uniform

distribution of random numbers generated by

PRNG as compared to TRNG:

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

Shreenabh Agrawal et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 558-563

 563

Table 3 : Kolmogorov-Smirnov Z Test for testing

Uniform Distribution

PRNG TRNG

Kolmogorov-Smirnov Z 0.709 0.516

Asymp. Sig. (2-tailed) 0.696 0.953

Interpretation: From the table above it is seen that

random numbers generated using the TRNG are

highly significant (asymptotic significance =0.953)

thus proving that they follow a uniform distribution

with equal probability of presence of every number.

a) Runs Test based on Median

Table 4: Runs Test based on Median

 PRNG TRNG

Z 1.698 0.255

Asymp. Sig. (2-tailed) 0.090 0.799

Interpretation: From the table above it is seen that on

testing with Runs Test based on median, random

numbers generated using the TRNG are highly

significant (asymptotic significance =0.799) thus

proving that they are statistically significant.

a) Runs Test based on Mean

Table 5: Runs Test based on Mean

 PRNG TRNG

Z 1.641 0.368

Asymp. Sig. (2-tailed) 0.101 0.713

Interpretation: From the table above it is seen that on

testing with Runs Test based on mean, random

numbers generated using the TRNG are highly

significant (asymptotic significance =0.713) thus

proving that they are statistically significant.

IV. CONCLUSION

To prevent cyber attacks and keep data safe in crucial

industries such as banking, defence, education

(online exams/ evaluation), fundamental research,

infrastructure (simulation), etc, the industry needs to

shift from PRNGs to TRNGs as they provide a

reliable solution to the issues related to randomness

of numbers for data security.

V. REFERENCES

[1]. Allen B, “Are the numbers really random?”,

https://www.random.org/analysis/ (2008)

[2]. Borza M, “The Sony PlayStation 3 hack

deciphered: what consumer-electronics

designers can learn from the failure to protect a

billion-dollar product ecosystem”,

https://www.edn.com/

Home/PrintView?contentItemId=4368066

(2011)

[3]. Buchanan W.J., Woodward A & Helme S.,

“Cryptography across Industry sectors”, pg 145-

162,

https://doi.org/10.1080/23742917.2017.1327221

(2017)

[4]. Chirgwin R, “Android bug batters Bitcoin

wallets”,

https://www.theregister.co.uk/2013/08/12/

android_bug_batters_bitcoin_wallets/ (2013)

[5]. Dorrendorf L, Gutterman Z, Pinkas D.,

“Cryptanalysis of the Random Number

Generator of the Windows Operating System”,

https://eprint.iacr.org/2007/419.pdf (2007)

[6]. Goldberg I and Wagner D, “Randomness and the

Netscape Browser”, Dr. Dobb's Journal,

http://www.ddj.com/windows/184409807 (1996)

Cite this article as : Shreenabh Agrawal, "Software

Psuedo Random Number Generators to Hardware True

Random Number Generators : a transition in Data-

Security ", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume 5

Issue 2, pp. 558-564, March-April 2019.

Journal URL : http://ijsrcseit.com/CSEIT1952132

http://www.ijsrcseit.com/
http://ijsrcseit.com/CSEIT1952132
http://ijsrcseit.com/CSEIT1952132

