
 CSEIT1952339 | Received : 01 May 2019 | Accepted : 17 May 2019 | May-June -2019 [5 (3) : 158-173]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 3 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT1952339

158

Neutralizing SQL Injection Attack on Web Application Using Server Side Code

Modification
Sarjiyus, O. and El-Yakub, M. B.

Department of Computer Science, Adamawa State University, Mubi, Nigeria

ABSTRACT

SQL Injection attacks pose a very serious security threat to Web applications and web servers. They allow

attackers to obtain unrestricted access to the databases underlying the applications and to the potentially

sensitive and important information these databases contain. This research, “Neutralizing SQL Injection attack

on web application using server side code modification” proposes a method for boosting web security by

detecting SQL Injection attacks on web applications by modification on the server code so as to minimize

vulnerability and mitigate fraudulent and malicious activities. This method has been implemented on a simple

website with a database to register users with an admin that has control privileges. The server used is a local

server and the server code was written with PHP as the back end. The front end was designed using MySQL.

PHP server side scripting language was used to modify codes. ‘PDO prepare’ a tool to prepare parameters to be

executed. The proposed method proved to be efficient in the context of its ability to prevent all types of SQL

injection attacks. Acunetix was used to test the vulnerability of the code, and the code was implemented on a

simple website with a simple database. Some popular SQL injection attack tools and web application security

datasets have been used to validate the model. Unlike most approaches, the proposed method is quite simple to

implement yet highly effective. The results obtained are promising with a high accuracy rate for detection of

SQL injection attack.

Keywords : Injection, Vulnerability, Modification, Attacks, Database.

I. INTRODUCTION

The alarming rise in fraudulent and malicious

activities carried out over the Internet has brought

about the classification of nine types of frauds,

developed from the data reported by Internet Crime

Complaint Centre (IC3) with SQL injection ranked as

the second most common and destructive attack on

the web. A number of recent surveys, the Open Web

Application Project [1] indicate that SQLI is among

top three worst vulnerabilities discovered in today’s

web-based applications after their deployment.

Moreover, a large portion of data security breaches

have been caused by SQLI attacks in real-world

resulting in huge financial losses to business

organizations [2]. So, detecting SQLI attacks early can

reduce the potential losses.

The IC3 website has seen a number of increases in

frauds involving the exploitation of valid online

banking credentials belonging to small and medium

sized businesses (IC3, IBM Internet Security Systems

2008). The greater percentage of Internet threats are

from software application vulnerabilities and flaw in

the design of software system [3].

Vulnerabilities in software may allow a third party or

program to gain unauthorized access to some

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT1952339

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 159

resource with malicious intent. Software

vulnerability control is one of the essential parts of

computer and network security. Intruders use

vulnerabilities in operating system and application

software to gain unauthorized access, to attack,

tamper with and damage other systems. This means,

avoiding software vulnerability is a major

counteracting action to protect software applications

from threats posed by intruders through the Internet.

It is difficult to design and build a secure web

application until the designer knows the possible

threats in application. Hence, threat modeling is

recommended as part of the design stages in web

application. The purpose of threat modeling is to

analyze the application's architecture and identify all

potentially vulnerable areas. Developers must follow

secure coding techniques to develop secure, robust,

and hack-resilient solutions. The design and

development of application layer software must be

supported by a secured network and hosting systems.

A weak input validation is an example of an

application layer vulnerability, which can result to

SQL injection attack. SQL injection is a technique for

exploiting web applications that uses client-supplied

data in SQL queries without stripping potentially

harmful characters [4]. The primary target of

malicious attackers may be to obtain data from the

databases. However, SQL injection offers more than

the data. SQL injection enables the attacker to run

arbitrary commands in the database. SQL injection

bugs lead to disclosing sensitive information,

tampering with the data, running SQL commands

with a highly undeserved opportunity. SQL Injection

(SQLI) vulnerability is a well-known growing

security concern for web applications that alters the

implemented query structures with supplied

malicious inputs. The execution of altered queries

may lead to security breaches such as unauthorized

access to application resources, escalation of

privileges, and modification of sensitive data [5].

The connection from the web application to the

database management system is made through

Application Programming Interfaces (APIs) like

Open Database Connectivity (ODBC) and Java

Database Connectivity (JDBC). By using the built-in

objects and methods, we make the connection to the

database server and execute the Structured Query

Language (SQL) queries. The queries are passed into

the SQL query processor and are executed. The

results of the queries are returned to the application

server. The application server checks the returned

data and takes the decision and then renders the data

in the dynamic web page. Most of the time, the query

that is passed to the database server for execution

contains user-supplied parameters. The input

parameters provided by the user may or may not be

trustworthy [6]. It is obvious that the query processor

will execute the query and return the result to the

user without considering about its type. But the

query can still contain some malicious codes and/or

may be logically incorrect.

As a result of intrusion, the data losses its

confidentiality, integrity, and authenticity. This

research sets out to mitigate such vulnerabilities and

defend against the attacks through a different

methodology that can detect and protect against SQL

Injection in web applications through independent

web services in a layered approach and through

focusing on the identification of invalid SQL

statements, analyzing the query for invalid non-SQL

keywords which are not present in database,

capturing errors, generalizing the error of illegal and

logically incorrect queries, printing outputs,

detecting SQL injections and maintaining file system

for further references.

II. CONCEPTUAL FRAMEWORK

There is no doubt that Internet security is of great

importance and should be highly prioritized. Web

servers are the basis to respond to users’ requirements

using Hypertext Transfer Protocols(HTTPs), but can

cause irreversible problems in case of insecurity.

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 160

Therefore, security needs should be met in web

servers so as to achieve key elements in security,

namely authentication, permission, confidentiality,

integrity, auditing, and availability. Using

vulnerabilities, hackers threaten and attack websites

and web servers. A threat can potentially lead to a

catastrophe that can damage an entire organization’s

resources and use the system’s vulnerabilities after a

successful attack. These attacks damage web servers

using weak points and insufficient validation in web

applications and web servers’ infrastructures. On the

other hand, weak points can help identify

vulnerabilities and improve web servers’ security.

SQL injection attacks are a form of injection attack,

where the attacker deliberately inserts SQL

commands in the input parameters with a view to

altering the execution of the SQL query at the server

[1].

Attackers take benefit of such situations where the

developers often combine the SQL statements with

user-submitted parameters and thus insert SQL

commands within those parameters to modify the

predefined SQL query. The result is that the attacker

can run arbitrary SQL commands and queries on the

database server through the application processing

layer [7].

A successful SQL injection attack can read

confidential data from the database, change the data

(insert/alter/update/delete), run administrative

processes, and retrieve the content of a given file

present on the database server and can also execute

operating system level commands [8].

A typical instance of SQL injection attack is given

below.

Suppose a web page is generated dynamically by

taking the parameter from the user in the URL itself,

like;

http://www.domainname.com/Admission/

Studnets.asp?Sid=165

The corresponding SQL query associated in the

application code is executed as

SELECT Name,Branch,Department FROM

Student WHERE StudentId = 165

An attacker may misuse the point that the parameter

“Sid” is accepted by the application and passed to the

database server without necessary validation or

escaping. Therefore, the parameters can be

manipulated to create malicious SQL queries. For

example, giving the value “165 or 2=2” to the variable

“Sid” results in the following URL:

http://www.domainname.com/Admission/

Studnets.asp?Sid=165 or 2=2

The SQL statement will now become:

SELECT Name, Department, Location FROM

Student WHERE Student Id = 165 or 2=2

This condition is always true and all the Name,

Department, and Location triplets will be returned to

the user. The attacker can further exploit this

vulnerability by inserting arbitrary SQL commands.

For example, an attacker may give request for the

following URL:

http://www.domainname.com/Admission/

Studnets.asp?Sid=165; DROP TABLE Student

The semicolon in the above URL terminates the

server side SQL query and appends another query for

execution. The second query is “DROP TABLE

Student” which causes the database server to delete

the table. In a similar way, an attacker can use

“UNION SELECT” statement to extract data from

other tables as well. The UNION SELECT statement

allows combining the result of two separate SELECT

queries. For example, consider the following SQL

query:

http://www.domainname.com/Admission/

Studnets.asp?Sid=165 UNION SELECT

UserId, Username, Password FROM Login;

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 161

The default security model for many web

applications considers the SQL query as a trusted

command. This allows the attackers to exploit this

vulnerability to bypass access controls, authorization,

and authentication checks. In some cases, SQL

queries allow access to server operating system

commands using stored procedures. Stored

procedures are usually bundled with the database

management server. For example, in Microsoft SQL

Server the extended stored procedure xp cmd shell

executes operating system commands.

Therefore, in the previous example the attacker can

set the value of “Sid” to be “165; EXEC master..xp

cmdshell dir – –”; this if executed will return the list

of files in the

current directory of the SQL Server process. The use

of LOAD FILE(‘xyz.txt’) in MySQL allows the

attacker to load and read arbitrary files from the

server.

The default security model for many web

applications considers the SQL query as a trusted

command. This allows the attackers to exploit this

vulnerability to evade access controls, authorization,

and authentication checks. In some cases, SQL

queries allow access to server operating system

commands using stored procedures. Stored

procedures are usually bundled with the database

management server [6].

Khaimar [9] pointed out that Code Injection Attack is

broadly classified into SQL Injection Attack (SQLIA)

and Cross Site Scripting Attack (XSS).

These vulnerable applications are targeted by

attackers or malicious users to perform their illegal

activities.

III. METHODS AND MATERIAL

Fig. 1: An illustration of how SQL Injection is carried

out [10].

2.1 Types of SQL Injection Attacks.

According to [6] there are different types of SQL

injection attack as presented in many studies. These

attack types have been named based on the technique

implemented to exploit the injection vulnerability as

listed below:

(1) Tautology.

Tautology is such a logical statement which is TRUE

in every possible interpretation. In SQL queries, the

same concept may be used in the conditional

statement of the query, that is, in the WHERE clause,

to make it always TRUE returning all data. The

simple use of tautology is as follows

select ∗from admin where user id= ‘ ’

and password = ‘ ’ or ‘a’ = ‘a’

This is often inserted in the vulnerable parameter to

perform the injection attack. This tautology is mainly

applied to bypass the login authentication. Tautology

is also used to confirm the blind SQL injection

vulnerability.

(2) Commenting the Code.

Like other programing languages, SQL also can

specify comment line in the code. By adding a double

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 162

hyphen in MS-SQL or a # in the case of MySQL, one

can comment the code. The comment line prevents

the code from execution. The attackers take

advantage of this and insert a comment in the

vulnerable parameter to disable the rest of the code

following the vulnerable parameter. A simple

example of using a comment line is

SELECT ∗from admin where userid= ‘xxx’;

-- and password =‘yyy’;

The above code can bypass the login authentication

by giving only valid user id.

(3) Type Mismatch.

In case of type mismatch in the query, SQL provides

a verbose error message, for instance,

http://www.domainname.com/Admission/

Studnets.asp?Sid=system user

The error output is like:

[Microsoft][ODBC SQL Server Driver][SQL

Server] error: xxx, Conversion failed

when converting the varchar value ‘sa’

to data type integer.

From the above error message, we can clearly know

that the current user is ‘sa’; hence, the attacker takes

advantage of this and provides type mismatch queries

like giving characters to a numeric type and vice

versa and can easily extract a lot of information.

(4) Stacked Query.

When a sequence of multiple SQL queries executed

in a single connection to the database server this is

called stacked or piggybacked query. Being able to

terminate the existing query and attach a completely

new one, taking advantage of the fact that the

database server will execute both of them, provides

more freedom and possibilities to the attacker

compared to simply injecting code in the original

query. Most of the DBMS supports the stacked query.

An example of stacked query for DROP and UPDATE

is given below:

http://www.domainname.com/Admission/

Studnets.asp?Sid=165; DROP TABLE Student

http://www.domainname.com/Admission/

Studnets.asp?Sid=165; UPDATE login set

password = ‘xxx’ where userid = ‘yyy’

Similarly, stacked query can be written and executed

for ALTER, DELETE, and so forth. This can severely

impact the back-end database.

(5) Union Query.

The union operator combines the results of two

SELECT queries and returns the result as one. Hence,

once we enumerate the table names and column

names, we can inject the UNION SELECT statement

in the vulnerable parameter to combine the results

with the original query and retrieve the data. The

example of using UNION SELECT is:

http://www.domainname.com/Admission/

Studnets.asp?Sid=165 UNION SELECT

userid, password FROM login;

The above request will combine the user-id and

password pair with the original query and will be

displayed to the client. We can further modify the

query to iterate through all the rows of the login

table.

(6) Stored Procedure and System Functions.

In DBMS, a stored procedure is a group of SQL

statements combined to create a procedure that is

stored in the data dictionary. Stored procedures are

present in compiled form so that many programs

can share them. The practice of using stored

procedures can be useful in improving productivity,

preserving data integrity, and controlling data access.

The attacker can take help of these stored procedures

to impact the SQL injection attack severely.

An example of using the stored procedure is:

exec master..xp cmdshell ‘ipconfig’

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 163

xp cmdshell is an extended stored procedure available

in MSSQL which allows the administrator to run

operating system level commands and get the desired

output.

The use of system defined functions also helps in

performing SQL injection. In SQL Server 2005 hashes

are stored in the sql logins view. The system hash can

be retrieved using the query:

SELECT password hash FROM sys.sql logins

http://www.domainname.com/Admission/

Studnets.asp?Sid=165+union+select+master.

dbo.fn varbintohexstr(password hash)+

from+sys.sql logins+where +name+=+‘sa’

The function fn varbintohexstr() converts the

password hash stored in the varbinary form into hex

so that it can be displayed in the browser and then

tools like “Cain and Abel” are used to decrypt the

hash into plain text.

(7) Inference.

Inference is the act or process of deriving logical

conclusions. Sometimes we test through inference to

extract some information; that is, “if we get this

output, then this might be happening at the back-

end.” Inference techniques can extract at least one bit

of data by noticing the response to a specific query.

Observation is the key, as the response of the query

will have a separate signature when the query is true

and when it is false. An example of using inference in

SQL injection is:

http://www.domainname.com/

Admission/Studnets.asp?Sid=165 and

SUBSTRING(user name(),1,1)=‘c’ –

If the first character of the USER is indeed ‘c’ then

the second condition (SUBSTRING(user

name(),1,1)=‘c’) is true and we would see the same

result and if not then we may get the output as “no

records exist” or something other than the usual

output.

The False and True conditions states are inferred

from the response on the page after each request is

submitted; that is, if the response contains “no

records exist” the state was False; otherwise, the state

was True. Similarly, by repeating the process, starting

with the letter ‘a’ and moving through the entire

alphabet, we can infer all successive character of the

USER name, for instance,

Sid=165 AND SUBSTRING(user name(),2,1)=

‘c’ (False)

Sid=165 AND SUBSTRING(user name(),2,1)=

‘d’ (True)

Sid=165 AND SUBSTRING(user name(),3,1)=

‘e’ (False)

Sid=165 AND SUBSTRING(user name(),3,1)=

‘b’ (True)

(8) Alternative Methods.

Web applications often use input filters that are

designed to protect against basic attacks, including

SQL injection. To evade such filters, attackers may

use some encoding technique. The technique is

achieved using case variation, URL encoding, CHAR

function, dynamic query execution, null bytes,

nesting striped expressions, exploiting truncation,

and so forth [6]. By using the above methods, the

attacker bypasses the defending mechanisms.

Examples of using alternative methods are as follows:

CHAR Function

UNION = CHAR(85) + CHAR(78) + CHAR(73) +

CHAR(79) + CHAR(78)

HEX Encoding

SELECT = 0x53454c454354

URL Encoding

SELECT%20%2a%20FROM%20LOGIN%20WHERE%

20USERID%20%3E%2010

Case Variation

uNiOn SeLeCt usErID, password FrOm

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 164

tblAdmins WhErE uname=‘admin’—

2.2 Existing Methods for Mitigating SQL Injection

Attack

Categorizing the different approaches to tackle the

issue of SQL injection attack involve the following:

(i) Static Analysis. Some approaches rely purely on

static analysis of the source code [11]. These methods

scan the application and use heuristics or information

flow analysis to detect the code that could be

vulnerable to SQL injection attack. Each and every

user input is inspected before being integrated into

the query. Because of the inaccurate nature of the

static analysis that is being used, these methods can

produce false positives. Moreover, since the method

relies on declassification rules to convert untrusted

input into safer one, it may generate false negatives

too. Wassermann and Su [12] proposed a method that

combines static analysis and automated reasoning

techniques to detect whether an application can

generate queries that contain tautologies. This

technique is limited to the types of SQL injection

attack that it can detect.

(ii) Static Analysis and RuntimeMonitoring. Some

approaches like Analysis and Monitoring for

Neutralizing SQL Injection Attack (AMNESIA) [12]

have combined both static analysis and runtime

monitoring. In the static part, they build legitimate

queries automatically that the application could

generate. In the dynamic part, the dynamically

created runtime queries are monitored and are

checked for the amenability with that of the queries

generated in the static part. This approach depends

on the following:

(i) First is scanning the whole application code to

define the critical spots.

(ii) Within each critical spot, the authors of that

paper “AMNESIA” generate SQL query models by

figuring the possible values of query string that may

be passed to the database server.

(iii) For each critical spot, this approach makes a call

to the monitoring procedure with two different

parameters (the string that contains the actual query

to be submitted and a unique identifier).

(iv) During execution when the application reaches

that spot, the runtime monitor is being invoked, and

the string that is about to be submitted as a query is

passed as a parameter with unique id.

(v) Then the method AMNESIA retrieves the SQL

query model for that spot and checks the query

against the previously generated static model.

This tool limits the SQL injection attack during static

analysis phase for query building and also it has

certain limitations particularly in thwarting attacks

related to stored procedures.

(iii) Context-Oriented Approach. Context-oriented

approach provides a novel method for protection

against different types of attack in web applications

[7].

This work presents a single generic solution for

various types of injection attack associated with web

applications. The authors have taken an alternative

view of the core root of the vulnerabilities. In this

work the common attack traits are analyzed and on

this basis a context-oriented model for web

applications protection is developed. But the presence

of a backdoor in the code may not get detected by the

model. In the case of code obfuscation, code hiding,

and so forth the method may not be able to function

as intended. Another approach by [7] provides a

generic and extensible PHP-oriented protection

framework. The proposed framework is mainly based

on intention understanding of the application

developer. It makes a real-time supervision of the

execution and detects deviations from the intended

behavior, which helps it in preventing potentially

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 165

malicious activity. This method purely focuses on

attack detection in six Security and Communication

Networks PHP environment. This method fails to

defend the attacks if the application is developed

using technologies other than PHP.

(iv) Input Validation. The cause of many injection

vulnerabilities is the improper separation of code and

input data. Hence various techniques have been

proposed on the basis of input validation. Security

Policy Descriptor Language (SPDL) [13] is used for

controlling the flow of user input through the secure

gateway. The specified policy analyses and transforms

each request/response by enforcing user input

constraints. Tools like PowerForms [14], AppShield

[15], and InterDo [16] use similar methodology. As

these approaches are signature-based, they can have

insufficient input validation routines and may

introduce false positives. As the approaches are also

human based, much effort is required to determine

the data that needs to be filtered and the right policy

to be applied.

(v) Instruction Set Randomization. The SQLrand [17]

is such a method which adds a random token to each

keyword and operator to all SQL statements in the

program code. Before the query is being sent to the

database, it is checked that all the operators and

keywords must contain the token. The attacks would

be easily detected as the operators and keywords

injected by the attacker would not have that token.

This method involves randomizing both the

underlying SQL parser in the database and the SQL

statements in the program code which makes it

cumbersome. Adding the random tag to whole SQL

statement and each keyword makes the query

arbitrarily long. Also using this method makes it open

to the possibility of brute-force attack.

(vi) Learning-Based or Anomaly Detection Methods.

A set of learning-based approaches has been proposed

to learn all the intended query structure statically or

dynamically [18]; [19]. The effectiveness of detection

largely depends on the accuracy of the learning

algorithms. The approach in [20] focuses on securing

the web application from external and internal

attacks. SQL Injection and Insider Misuse Detection

System (SIIMDS) is a technique that takes advantage

of both misuse detection methods and anomaly

detection methods to reduce the risk resulting from

SQL injection attack. It consists of three modules

such as misuse detection, anomaly detection, and a

response module. The SQL statement is compared

with a list of stored SQL injection signature patterns.

If there is a match, there is an attack and the SQL

statement is now passed to the response module for

necessary action.

Furthermore, if there is no-match found with the

stored attack pattern, the SQL statement is forwarded

to anomaly detection module for behavioral analysis.

If some abnormality is found, then the SQL statement

is passed to the response module for appropriate

action. Otherwise, the SQL statement is considered to

be perfectly attack-free and ready for execution.

In summary, here are the list of the existing

approaches:

i. AMNESIA (Analysis and Monitoring for

Neutralizing SQL Injection Attacks)

ii. SQLrand (SQL randomization)

iii. SPDL (Security Policy Descriptor Language)

iv. SIIMDS (SQL Injection Insider Misuse

Detection Systems)

v. SQLIPA (SQL Injector Protector for

Authentication)

A detailed study of literatures shows that

considerable efforts have been made to devise many

techniques for preventing SQL injection attacks.

However, security in web applications cannot be

disregarded as it has a wide existence.

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 166

In accordance with this, existing literatures for

preventing SQL injection attacks in web applications

have been studied and below are some of the

methods used to mitigate the menace of SQL

Injection attack.

Asagba and Ogheneovo [21] stated that Detection or

prevention of SQLIAs is a topic of active research in

computer security. State-of-the-practice SQL

countermeasures are far from effective.

OWASP [1] notes that almost all Web applications

deployed today are still vulnerable to SQL injection

attacks. Signature-based Web application firewalls

which act as proxy servers filtering inputs before

they reach Web applications and other network-level

instruction detection methods may not be able to

detect SQLIAs that employ evasion techniques [22].

Boyd and Keromytis [17] proposed a method named

as Instruction Set Randomization. In this approach a

random integer is appended with the valid SQL

keyword before sending to database. Recognition of a

random integer is difficult for both attacker and

database too. So author proposed independent

module which decodes SQL keywords with their

original name before sending to database. This

method has negligible performance overhead.

Halfond and Orso [19] proposed an approach

AMNESIA (Analysis and Monitoring for Neutralizing

SQL Injection Attacks). This approach is based on

static and dynamic analysis of queries. In Static

phase, query model is generated at each point of

access to the database. In dynamic phase, queries are

intercepted before sending to the database and are

checked against statically to build model.

Performance of this approach is totally based on the

static analysis for building query models.

McClure and Krüger [23] pointed that their approach

is based on the object oriented programming. Their

solution consists of an executable Sqldomgen which

is executed against a database [24]. This is referred as

a SQL domain object model (SQL). These classes are

useful to construct a dynamic SQL statement with

manipulating any string. In this approach every valid

SQL statement is constructing using an object data

model. Next, they obtain the schema of the database,

and then iterate through the tables and columns

contained in the schema and output number of files

containing a strongly typed instances of the abstract

object model [24].

Buehrer, Weide and Siviliotti [25], proposed an

approach SQL Guard. In this approach queries are

checked at runtime. Here, the runtime evaluation of

a query based on a model which is expressed as a

grammar that only accepts legal queries. SQL Guard

approach use secret key to delimit user input during

parsing by runtime checker. SQL Guard approach is

stopping all type of SQLIA except stored procedures.

Su and Wassermann [26] proposed an approach

named as SQL Checker here they implement their

algorithm on a real time environment and are

checked at a runtime. A secret key is used to delimit

the user input. Overhead of this method is low.

Bisht and Madhusudan [27], proposed an approach

CANDID. This method is based on a dynamic

candidate evaluations method, which automatically

prevent SQLIA. This framework dynamically extracts

the query structures from every SQL query location

which are projected by the developer (programmer).

This approach solves the issue of a manually

modifying the application to create the prepared

statements.

Putthacharoen and Bunyatnoparat [28], proposed a

method based on a concept named as a dynamic

cookies rewriting. This approach is work with

cookies. A proxy agent is placed between client and

server. Cookies rewriting method can change the

value of name attribute in the cookies field. Those

cookies are stored with their original names at server.

As browser’s database do not store original

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 167

information of cookies, so even if attackers steal

cookies from the database, they cannot be used later

to impersonate the users [24].

The tool detected both categories of XSS attack

without having any changes made at the client and

server site. But the proxy failed to intercept https

requests coming from the client [24].

Galan, Alcaide, Orfila, and Blasco [29] proposed a

method name as a multi-agent scanner. This method

is work well with both type of XSS Attack namely

stored and reflected attack. This proposed method is

tested in different scenarios; secured and unsecured,

but only basic attack vectors were tested, more

vectors can be added to test the accuracy of their

approach [24].

Choudhary, and Dhore [24], proposed an approach

CIDT (code injection detection tool). Here query

detector is used to detect SQLIA and script detector is

used to detect XSS. This approach is work with both

type of code injection attack. But this method fails to

detect stored procedure attack.

IV. MATERIALS AND METHOD USED

The methodology adopted for the application

development is the waterfall model. This is because

it explicitly outlines each step and processes

associated with developing an application. Also, the

use of unified modeling language (UML) as a visual

language allows the modeling of processes, software

and system in order to clearly express the design of

the system architecture. Interview was administered

to 55 system administrators in various organizations

including institutions of higher learning, all in

Nigeria. In addition, thirty (30) journal articles

relating to server and database security were

reviewed. The framework was actualized using

Hypertext Markup Language, Cascading Style Sheet

(CSS3) and JavaScript, PHP and structured Query

Language MySQL. In designing the front- end

interface, the Hypertext Markup Language (HTML5)

was used. The server used was the local server and

the server code was written with PHP as the back-

end. PHP server side scripting language was used to

modify codes while Acunetix was used in testing the

vulnerability of the codes.

3.1 Designing the System

The query written by the developer is static until it

gets the input parameters from the user. As the input

provided by the user may not be trusted, the aim here

is to take care of the query which contains any user

input. The attacker may input malicious code along

with the input parameter. The malicious input can

make a terrible impact on the database server,

starting from extracting the sensitive data from the

database to taking complete control over the database

server. Hence, this new system methodology

‘Neutralizing SQL Injection Attack on web

applications using server side code modification’,

monitors the query to check whether the user has

added any such additional character other than the

intended parameter. The method involves the

following steps for dealing with the SELECT query

which contains a WHERE clause.

Step 1.From the SELECT query, all characters after

the WHERE clause are extracted and stored in a

string S1.

Step 2.Input parameters are accepted from the user(it

could be in the form of login information or injection

malware). The parameters are checked for their

appropriate type. If the input type matches the

required type, the input parameters are added to the

query. Otherwise, the parameters are rejected, and

the page is reloaded with a warning message of

“Invalid Parameters.”

Step 3.The query string is normalized to convert it

into a simple statement by replacing the encoding if

any.

Step 4.Using the string extraction method all

characters after the WHERE clause is extracted.

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 168

Step 5.The input parameters from the extracted string

are removed sequentially as they were added. For

numeric parameters, the numbers are removed, and

for alphanumeric parameters, the characters enclosed

in single quotes are removed. The new string is

named as S2.

Step 6.Strings S1 and S2 are compared if they match

and then it is considered that there is no injection

attack, and the query is sent to the database server for

execution. Otherwise, the query is dropped and the

page is reloaded with a warning message of “Error

processing bad or malformed request OR YOU ARE

AN UNAUTHORISED PERSONNEL”. Here in this

step the neutralization is done.

The SQL query may have NONWHERE clauses such

as HAVING, LIKE, and ORDER BY, which may

contain the user-supplied parameter. In such cases at

Steps 1 and 4 the developer has to replace the

WHERE with these NONWHERE clauses.

The Fig. 2 below explains the conceptual model

design for preventing SQL Injection attack.

The proposed model is incorporated in the test web

application for implementation purposes. The web

application contains queries to display pages

containing data from several tables. The similar set of

codes with necessary changes are tested against all

types of SQL queries, using a combination of all

parameter types, and queries for INSERT, UPDATE,

and DELETE operations.

The input parameters from the user are checked for

its appropriate type. Type checking reduces the

chance of attack to some extent. Then, the query

string is normalized to replace the encoding. The

string extraction function is called again to extract

the string. Then, by specifying the number of

parameters and their types, the parameters are

removed. For numeric parameters, numbers are

removed and, for character type, characters enclosed

in single quotes are removed. Finally, strings are

compared for their equality. If the strings are equal,

then the query is sent to the database for execution.

Otherwise, a warning is generated suspecting SQL

injection attack.

Thus using PHP; PDO::prepare- prepares an SQL

statement to be executed. The SQL statement can

contain zero or more named (:name) or question

mark (?) or slashes (/) parameter markers. The

prepare method helps to remove such parameters for

which real values will be substituted when the

statement is executed.

Parameterized queries are simple to write and

understand. They force you to define the SQL query

beforehand, and use placeholders for the user-

provided variables within the query. You can then

pass in each parameter to the query after the SQL

statement is defined, allowing the database to be able

to distinguish between the SQL command and data

inputted by a user. If SQL commands are inputted by

an attacker, the parameterized query would treat

these as untrusted input, and the injected SQL

commands will never get to execute.

- Using PDO (PHP Data Objects):

Many web developers likely learned to access

databases by using PHP’s mysql or mysqli extensions.

While it is possible to write parameterized queries

with PHP’s mysqli extension, PHP 5.1 introduced a

better way to work with databases — PHP Data

Objects (PDO). PDO not only provides methods that

make parameterized queries easy to use, but also

makes code more portable (PDO works with several

databases, not just MySQL) and is easier to read.

By properly parameterizing SQL queries, any user

input that is passed to the database is treated as data

and can never be confused as being part of a

command.

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 169

3.1.1 Input Design/Specification

The expected input to the system are email, username,

password and date. The password is encrypted with

MD5 an encryption algorithm.

Fig. 4: Input Design

3.2 SYSTEM REQUIREMENTS

The system requirements are divided into software

and hardware requirements.

3.2.1 Software Requirements:

The software requirements include:

• Windows 7 Operating System (at least).

• HTML5

• Php5.5

• CSS3

• JavaScript

• MySQL.

• Brackets (text editor)

• Apache Server (WAMP or XAMPP)

3.2.2 Hardware Requirements.

The hardware requirements include:

• Computer System (Laptop or Desktop)

• 1Gb Ram (at least)

• 50Gb Hard disk (at least).

V. IMPLEMENTATION

Administrator Login Page

The administrator has privileges to view the

database and delete users using the administrator

username and password.

Fig. 5: Administrator Login page

After login in, the administrator gains access to

the panel below.

Fig.6: Administrator Panel

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 170

Database of the system

The simple web application has a database with

the following table called ‘users’.

Fig.7: Database Table ‘users’

Users Login page

Registered users login using this page.

Fig.8: User Login page

Users Registration Page

Intending users login using this page.

Fig.9: User Registration Page

The following is a display of a legitimate

HTTP request that could be made to the

vulnerable code above:

http://localhost/?id=2

OUTPUT > judy

Fig.10: Legitimate HTTP request.

Injecting the code below displays the

password for the user with the inputted id

http://localhost/?id=-2 UNION SELECT

password FROM users where id=2

OUTPUT>3d8ea529e337658e5b84749970f417

96

The encrypted password can be decrypted.

Fig.11: Result of SQL Injection on vulnerable

code.

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 171

SQL Injection on secure code

Injecting this code:

http://localhost/?id=-2 UNION SELECT

password FROM users where id=2

OUTPUT>Error processing bad or malformed

request OR YOU ARE AN UNAUTHORIZED

PERSONNEL

Fig.12: Result of SQL Injection on Secure Code

Acunetix test on vulnerable code

Fig. 13: Acunetix SQL Injection Vulnerability

Scan with threat detected.

Acunetix test on secure code

Fig. 14: Acunetix SQL Injection Vulnerability Scan

with no threat detected.

A quick scan with the ‘SQL Injection’ Scan Type in

Acunetix confirms the vulnerability.

VI. CONCLUSION

The new system framework for the application

termed ‘Neutralizing SQL Injection attack on web

application using server-side code modification’ is a

novel online detection method against SQL injection

attack. Its strength depends on sequentially

extracting the intended user input from the dynamic

query string to check for any malicious input. Unlike

other existing approaches, this method is quite simple

to implement yet highly efficient and effective in

detecting attacks. The method has been implemented

in the test web application to demonstrate its

effectiveness.

VII. REFERENCES

[1]. OWASP (2010). Open Web Application-Top-

Ten-Projects.

[2]. Curtis S. (2012). “Barclays: 97 percent of data

breaches still due to SQL injection”,

http://news.techworld.com/security/3331283/b

http://www.ijsrcseit.com/
https://www.acunetix.com/blog/docs/create-web-scanning-profiles/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 172

arclays-97-percent-of-data-breaches-still-due-

sqlinjection

[3]. Hossain Shahriar, Sarah North, and Wei-Chuen

Chen, (2017).“Early Detection of SQL Injection

Attacks”.

[4]. Shanmughaneethi V.and Swamynathan S.

(2012). “Detection of SQL Injection Attack in

Web Applications using Web Services”.

[5]. Johns M., BeyerleinC., GieseckeR., PoseggaJ.,

“Secure Code Generation for Web

Applications,”Proc. of the 2nd International

Symposium on Engineering Secure Software

and Systems (ESSoS '10),Pisa, Italy, LNCS 5965,

pp. 96-113, Springer.

[6]. Dalai A. K. and Jena S. K. (2017). “Neutralizing

SQL Injection Attack in Web Applications

Using Server Side Code Modification”.

[7]. Prokhorenko V., Chook. R., and Ashman H.,

(2016). “Context-oriented Web application

protection model,” Applied Mathematics and

Computation, vol. 285, pp. 59–78.

[8]. Guimaraes B. D. A., (2009). Advanced SQL

injection to operating˜ system full control,

Black Hat Europe, white paper.

[9]. Khaimar, C. (2015). “Detection and automatic

prevention against SQL Injection Attack and

XSS attack performed on web applications”.

[10]. Parveen, S. and Chandrakant, S. (2017). “SQL

Injection Impact on Web Server and Their Risk

Mitigation Policy Implementation Techniques:

An Ultimate solution to Prevent Computer

Network from Illegal Intrusion”.

[11]. Livshits V. and Lam M., (2008). “Finding

security vulnerabilities in Java applications

with static analysis,” in Proceedings of the 14th

Conference on USENIX Security Symposium,

pp. 18–25, Baltimore, Md, USA.

[12]. Wassermann G. and Su Z., (2004). “An analysis

framework for security in Web applications,” in

Proceedings of the FSE Workshop on

Specification and Verification of Component-

Based Systems (SAVCBS ’04), pp. 70–78,

Citeseer.

[13]. Scott D. and Sharp R., (2003). Abstracting

Application-level Web Security. In Proceedings

of the 11th International Conference on the

World Wide Web, pages 396–407.

[14]. Brabrand C., Møller A., Christensen R. M., and

Schwartzbach M. I., (2000) “Power Forms:

declarative client-side form field validation,”

World Wide Web Journal, vol. 7, no. 43, pp.

205–314.

[15]. Sanctum Inc, (2002). App Shield 4.0

Whitepaper, http://www .sanctuminc.com.

[16]. Kavado I, (2003). InterDo Version 3.0,

http://www.protegrity.com/data-security-

platform.

[17]. Boyd S.W. and Keromytis A.D. (2004).

SQLRand: Preventing SQL Injection Attacks. In

Proceedings of the 2nd International

Conference of Applied Cryptography and

Network Security (ACNS ‘04), Yellow

Mountain, China, pp. 292 -302.

[18]. Lee S., Low W, and Wong P., (2002). “Learning

fingerprints for a database intrusion detection

system,” in Computer Security— ESORICS

2002, pp. 264–279, Springer.

[19]. Halfond W. G. J. and Orso A., (2005).

“AMNESIA: analysis and monitoring for

Neutralizing SQL-injection attacks,” in

Proceedings of the 20th IEEE/ACM

international Conference on Automated

Software Engineering (ASE ’05), pp. 174–183,

ACM, Long Beach, Calif, USA.

[20]. Asmawi A., Sidek Z. M., and Razak S. A.,

(2008). “System architecture for SQL injection

and insider misuse detection system for DBMS,”

in Proceedings of the International Symposium

on Information Technology (ITSim ’08.

[21]. Asagba P.O. and Ogheneovo (2011). “A

Proposed Architecture for Defending Against

Command Injection Attacks in A Distributed

Network Environment”

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Sarjiyus, O. and El-Yakub, M. B. Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 158-173

 173

[22]. Maor O. and Shulman A. (2005). SQL Injection

Signatures Evasion. White Paperof Imperva

International.

[23]. McClure R.A., and Kruger I.H., (2005). "SQL

DOM: compile time checking of dynamic SQL

statements," Software Engineering, 2005. ICS

2005. Proceedings. 27th International

Conference on, pp. 88- 96, 15-21.

[24]. Choudhary, A. S. and Dhore, M.L. (2012) CIDT:

Detection of Malicious Code Injection Attacks

on Web Application” International Journal of

Computer Application, Volume 52-No.2.

[25]. Buehrer G., Weide B. W., and Sivilotti P. A. G.,

(2005). “Using parse tree validation to prevent

SQL injection attacks,” in Proceedings of the

5th International Workshop on Software

Engineering and Middleware (SEM ’05), pp.

106–113, ACM, Lisbon, Portugal.

[26]. Su Z. and Wassermann G. (2006). The Essence

of Command Injection Attacks in Web

Applications. In Conference Record of the 33rd

ACM SIGPLAN—SIGACT Symposium on

Principles of Programming Language POPL‘06,

New York, NY, pp. 372 – 382.

[27]. Bisht P., Madhusudan P. and Venkatarish-nan

V.N. (2010). CANDID: Dynamic Candidate

Evaluations for Automatic Prevention of SQL

Injection Attacks, ACM Transactions on

Information and System Security, 13(2),1-39

[28]. Putthacharoen, Rattipong, Pratheep

Bunyantoparat, (2011). “Protecting Cookies

from Cross Site Script Attacks Using Dynamic

Cookies Rewriting Technique”, ICACT 2011,

pp 1090-1094.

[29]. Galan E, Alcaide A, Orfila A, Blasco J., (2010).

“A Multi-Agent Scanner to Detect Stored-XSS

Vulnerabilities”, Internet Technology ansd

Secured Transactions (ICITST) pp 1-6.

Cite this article as :

Sarjiyus O., El-Yakub M. B. , "Neutralizing SQL

Injection Attack on Web Application Using Server

Side Code Modification", International Journal of

Scientific Research in Computer Science, Engineering

and Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 5 Issue 3, pp. 158-173, May-June

2019. Available at doi :

https://doi.org/10.32628/CSEIT1952339

Journal URL : http://ijsrcseit.com/CSEIT1952339

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT1952339
http://ijsrcseit.com/CSEIT1952339

