
CSEIT195248 | Received : 01 March 2019 | Accepted : 10 March 2019 | March-April -2019 [5 (2) : 187-197]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 2 | ISSN : 2456-3307

DOI : 10.32628/CSEIT195248

187

A Survey of Object-Oriented Programming Languages
M. Surya1, S. Padmavathi2

1Computer Science and engineering, Sri Krishna College of Technology, Coimbatore, Tamilnadu, India
2Assistant Professor, Computer Science and engineering, Sri Krishna College of Technology, Coimbatore,

Tamilnadu, India

ABSTRACT

Object oriented programming has become a very important programming CONCEPT of our times.The time it

was brought into existence by Simula. It directly support the object notions of classes, inheritance, information

hiding, and dynamic binding. There is a variety of implementations for each of these concepts, and there is no

general agreement as to how a particular concept must be interpreted. This survey takes a detailed look at the

concepts which are fundamental to object-orientation, namely inheritance and polymorphism. Different

aspects of inheritance and polymorphism are implemented in various popular Object oriented program

language. We conclude that there is still lot of work to be done to reach a common ground for these to achieve

features of OOPs. This survey presents a comparison of Java, C++, C# , Eiffel, Smalltalk, Ruby and Python in

terms of their inheritance and polymorphism implementations. The paper also presents a compilation of the

observations made by several surveys [1].

Keywords : OOPL, C++, C#

I. INTRODUCTION

There is a big variety of programming languages

catering to various kinds of development

requirements. Three of the main categories are

procedural languages (e.g. C, Pascal, etc.), functional

languages (e.g. Haskel, Ocaml, etc.), and object-

oriented programming languages (e.g. C++, Java, etc.).

The object-oriented design paradigm has been

popular for some time owing its success to the

powerful features it offers for making program

development easy and robust. OOPLs, such as C++

and Java, offer an intuitive way of developing

programs and provide powerful features for

supporting the program development. While

languages like C can be used to develop programs

that follow an object-oriented design, the support of

features such as inheritance, encapsulation, strong

type support, exception handling, etc. in the OOPLs

make them more suitable for such development.

While the object oriented programming concepts

provides a more intuitive way of programming, it is

also has complexities. This is due to the various

complex features that the paradigm provides. OOPLs

differ widely in the way they implement features that

are associated with the object design. For example,

some languages support multiple inheritance while

some other languages consider it a bad feature. In this

survey we discuss the various features of object

oriented programs and how the languages we

considered differ in implementing these features. The

survey is organized as follows.

II. KEY OBJECT-ORIENTED CONCEPTS

While OOPLs came into existence in 1960s , there is

considerable disagreement on what characterizes

object oriented programming. As recent as 2006,

Armstrong [1] suggests that the key concepts of

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/IJSRCSEIT
https://doi.org/10.32628/IJSRCSEIT

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 188

object-oriented programming are not exist . This

certainly makes it very hard to describe OOPLs, since

there is not an agreement on a universal definition of

what object orientedness is. Nierstrasz [27] suggests

that languages have a part of object orientation that

can be assessed by considering the support the

languages provide for encapsulation. Thus, he assign

encapsulation to be the fundamental building block

of the object oriented paradigm. While Encapsulation

is certainly a fundamental concept, it is not sufficient

to define what the object oriented programming is.

Armstrong [1] approaches this by taking a

quantitative approach of considering the most

commonly occurring concepts among various

documents in the object-oriented programming

literature. In other words, he performed a feature

selection exercise over a corpus of documents which

is used to extract the key concepts of object oriented

programming. In this survey we select a subset of the

“quark” which is identified by Armstrong , and we

discuss how these “quarks” are implemented in the

object oriented programming languages we studied.

2.1 Class

A class [5] provides the basic mechanism by which

attributes and methods common to a concept are

grouped together. It provides a description of runtime

behavior of the objects instantiated from it. The

object-oriented paradigm implies that the methods in

a class are not based on some common algorithms.

Instead, they are based on the intuitive

understanding of what methods the modeled object is

allowed to hold. The methods also depend on the

level of detail at which the object is being modeled at.

Thus, a class defines a logical grouping of methods

and attributes. It acts as a means by which abstraction

and encapsulation are achieved. The complex details

of implementation are hidden within the abstraction

(i.e. are implemented with the class workings), which

aids in dealing with complexity. A well designed class

will have an expected interface, which is considered

as an immutable contract between the class and its

client.

2.2 Abstraction

The abstraction is the simplified view of reality. The

level depends on the object being abstracted and on

the requirements of the problem domain. The

abstraction is presented by the methods and the

attributes that the class exports to the clients.

2.3 Inheritance

Inheritance [5] is the mechanism by which

hierarchical class designs can be carried out. Creating

a subclass of the original class provides inheritance

from the original class properties. The new class

inherits all of the existing properties, therefore, all

the behavior of the original class. Inheritance

promotes code reusability of code . A class with

specialized behavior can be implemented by

extending the generic superclass by modifying the

methods dealing with specialization. The reuse

occurs as the methods unmodified by a subclass

which is provided by the super class. A subclass can

extend all the aspects of its super class and can

modify any behavior . Multiple inheritance allows for

a class to inherit traits from multiple classes which is

usually considered as a dangerous design mechanism.

2.4 Encapsulation

Encapsulation [5] is hiding the details of

implementation within a class. The users are not

allowed to peek down the class other than the

standard interface. For example, any one can use any

field of a structure . Encapsulation can be enforced by

making certain fields private and clients cannot

directly reference these fields though they are aware

of the fields. Encapsulation allows for keeping a

clearer boundary between a class and the external

world, and it gives programmers the freedom to

changing the internal workings of a class.

2.5 Polymorphism

http://www.ijsrcseit.com/
http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 189

Polymorphism [8] allows for significant programming

by providing similar looking structure for handling a

variety of objects. For example, methods doing

similar job may have the same name with different

signature the same class/method may work with

multiple types of objects a subclass can be substituted

for a parent class [8].

III. 3.OBJECT-ORIENTED PROGRAMMING

LANGUAGES

3.1 A Brief History

An object oriented programming language is one

which allows object oriented programming

techniques such as encapsulation, inheritance,

modularity, and polymorphism. Simula (1967) is

accepted as the first language to have the primary

features of an object oriented language which was

created for making simulation programs. The idea of

object oriented programming gained momentum in

the 1970s with the introduction of Smalltalk (1972 to

1980), which has the concepts of class Simula.

Smalltalk is the language, with the help of which

much of the theory of object oriented programming

was developed. Bjorn Stroustrup integrated object

oriented programming into the C language by which

the language generated called C++ which became the

first object oriented language to be widely used.

James Gosling developed a version of C++ called Java

which was developed to let devices and peripherals

and appliances which posses a common programming

interface [7]. In 2000, Microsoft announced both

the .NET platform and C# is similar in many respects

to C++ and Java. Ruby and Python are scripting

languages, they support the object oriented concepts,

and we thought it would be interesting to scripting

OOPLs in this survey.In pure OOPLs everything is

treated as an object, from primitives such as integers,

are way upto whole classes, prototypes, modules, etc.

They are designed to facilitate, the object oriented

paradigm. Of the languages that we considered,

Smalltalk, Eiffel and Ruby are pure OOPLs.

Languages such as C++, Java, C# , and Python were

designed only for object oriented programming, but

they also have some procedural elements. This is why

they fall under the hybrid OOPLs category.

3.2 Smalltalk

Small talk [19] was the general purpose object

oriented programming language. It is a pure

dynamically object oriented language. Small talk

supports a uniform object model. Everything a

programmer deals with the object including primitive

types and user-defined types. Clients can access the

functionality of a class by invoking well defined

methods. Hence, all operations are performed by

sending messages to the objects. Small talk supports

the ability to instantiate objects. Small talk supports

full inheritance, where all the aspects of the parent

class are available to the subclass. Small talk does not

support multiple inheritance because Multiple

inheritance can cause significant maintenance burden,

as changes in any parent class will affect multiple

paths in the inheritance hierarchy. Initial

implementations of Small talk support reference

counting for automatic memory management. The

main idea is to reduce the programming burden.

Moreover, encapsulation is not in Smalltalk but it

allows direct access to the instance slots, and it also

allows complete visibility of the slots.

3.3 C++

C++ [17] was developed by Bjarne Stroustrup (1979).

It was designed for systems programming, extending

the C programming language. C++ is an object-

oriented version of C which has added support for

statically typed object oriented programming,

exception handling, virtual functions, and generic

programming to the C programming language. C++ is

not a pure object oriented languages, because are

both procedural and objected oriented development.

It give the concept of multiple inheritance and

exception handling, but it does not provide garbage

collection. C++ uses compile-time binding, means

that the programmer must specify the specific class of

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 190

an object. This makes for high run time efficiency ,

but it trades off some of the power of reuse classes

[13]. Unlike Java, it has bounds checking, it provides

access to low-level system facilities. C++ pointers can

be used to manipulate specific memory locations,

which is a task necessary for writing low-level

operating system components.

3.4 Java

Java [16] is an object oriented language. It has similar

syntax to C++ which make it easier to learn. However,

Java is not compatible with C++ which does not allow

low level programming constructs, which ensures

type safety and security. Java does not support C/C++

pointer arithmetic, which allows the garbage

collector to relocate referenced objects, and ensures

type safety and security. similar to Small talk, Java

has garbage collection which runs on a protected java

virtual machine. Java is a portable language that can

run on any web-enabled computer via that

computer’s web browser. A major benefit of Java byte

code is portability, since the byte code can be

executed independent of the operating system on a

given computer. However, running interpreted

programs is always slower than running programs

compiled to native executables [16].Java has class

hierarchy with class Object at the root and provides

single inheritance of classes. Java provides interfaces

along with multiple inheritance. Java is considered an

impure object oriented language because its built-in

types are not objects , it has implemented basic

arithmetic operations as built-in operators, rather

than messages to objects.

3.5 C#

C# [6] is an OOP language part of the .NET

framework and it is not a pure OOPLs since it

encompasses functional, imperative and component-

oriented programming in addition to the object-

oriented concepts. It has an object oriented concepts

based on C++ and is heavily influenced by Java. In

some communities it is has been assigned as

Microsoft’s version of Java. similar to Java, it has

garbage collection and it is compiled to an

intermediate language, which is executed by the

runtime environment known as Common Language

Runtime which is similar to the JVM. The C#

conception of class and instances, inheritance and

polymorphism, are relatively standard. Methods are

more interesting because of the introduction of so-

called properties and delegates [9].

3.6 Eiffel

Eiffel is a language, which was developed in 1985.

Eiffel is a pure object-oriented language. The design

is based on classes and All messages are directed to a

class. A class has ability to export some of its

attributes for user visibility and keep others hidden.

Eiffel enables the use of assertions which express

formal properties of member methods in terms of

preconditions, post conditions, and class in variants.

Multiple inheritance is permitted in Eiffel. The name

conflict issue is solved by providing ability to rename

the inherited names. Duplicate names are not

allowed. Several other feature adaptation are

available to make multiple inheritance safe. To avoid

wrong definitions all the assertions defined in parent

classes are inherited. Thus class designers can choose

to define tight constraints that ensure their subclasses

do not deviate much . The ability to assign a subclass

object to a superclass pointer is provided with static

checking. Encapsulation is supported in Eiffel. The

class designer controls the visibility of class features.

A method can be explicitly made available to all

subclasses. The data can be exported in a read only

fashion. There is no syntactic difference between a

attribute access and access to a method with no

parameters.There is no control on the inherited

attributes. A subclass inherits all the attributes of the

parent class and can change the visibility of the

attributes.

3.7 Ruby

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 191

Ruby [14] is an object-oriented scripting language

developed by Matsumiko Yukihiro. It is similar in

purpose to python. Ruby is designed to be an object-

oriented programming language based on Perl, and

which borrows features from several Object Oriented

languages like Eiffel and Small talk. Ruby has a pure

object oriented which does not allow functions. All

methods must belong to few class. Ruby only

supports single inheritance, though multiple

inheritance functionality is indirectly supported. A

module provides a partial class definition.

3.8 Python

Python is an object oriented scripting language

developed by Guido Van Rossum. It has become very

popular in recent years because its application in the

internet domain. Python allows both procedural and

objected oriented development. Developers can write

classes and methods in them and can also write

functions . There is a different syntax for invoking

methods which is opposed to invoking functions and

this brings out the heterogeneous nature of python

programming. A programmer can define his own

classes, abstraction which is supported by python.

The encapsulation however is not fully supported in

which access control is primitive in Python. There

are no public methods , private methods and the only

protection is by name mangling. If a programmer

knows how name mangling is performed he could

invoke any class method. Python allows multiple

inheritance. The issue of name clashes in multiple

inheritance is resolved by l programmer define the

order of superclasses by the order in which they are

declared.

IV. 4 INHERITANCE AND POLYMORPHISM IN

OOPL

4.1 Inheritance

Inheritance is a fundamental object oriented

technique. This also has been the most controversial

feature of OOPLs. Inheritance is the language feature

which allows code reuse at the level of software

modules called “classes”. Inheritance can be used for

many purposes which is used to represent a subtype,

to generalize, to specialize, to add restriction, etc. It is

suggested that it is not a good to mix various uses of

inheritance in a project [12].

4.1.1 Class Hierarchy

Inheritance is a mechanism which brings hierarchical

relationship into the class model. Without this

hierarchical relationships, having a set of unrelated

classes would be too hard to manage. The

hierarchical relationship can be extended to all

classes which is done by languages like Java, C#,

Eiffel and Small talk. These languages define the most

generic class that are ancestor for all the classes in the

language. For Java and Small talk this is “Object”,

while for Eiffel this is “Any” [20]. The presence of a

single ancestor implies that all classes can have

minimal functionality in which they inherit from

this ancestor. The advantage is that object of any class

can be downcast to the pointer of the ancestor. This

allows C’s void pointer like functionality even in

strongly types languages. C++ does not have any

notion of a single ancestor class. In C++, classes are

designed as a forest of class hierarchies. The

advantage of this approach is the application does not

need to link with the entire object hierarchy for its

operation. For a Java , all the classes in the hierarchy

must be present. In C++ application can just link with

a subset of classes.

4.1.2 Control of Superclass

Inheritance provides ability to represent an “is a”

relationship in software. The fundamental way of

using inheritance is to define a subclass which

inherits all the attributes of a parent class. The

subclass may extend or specialize the inherited code

and this depends on the class use. The changes for

extension may happen in a way that violates the “is a”

relationship. It is very hard for a programming

language for ensure that inheritance is properly

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 192

applied or not. This is the reason why inheritance is a

controversial feature. For example, let us consider a

draw() method inherited from a shape object into a

rectangle object. The rectangle’s draw() could be

coded to draw itself. But while doing , it could

change some of the semantics of the inherited draw().

The programming language cannot ensure that

rectangle’s draw() conforms to certain semantics that

Shape’s draw defines. Eiffel programming language

associates some conditions with each class method,

and these are inherited by the sub classes. This can be

used to control the amount by which a subclass

method conforms to the base method specification.

When a subclass chooses to redefine a method,only

the in variants from the inherited class are applied to

the new definition. This could potentially weaken

the ability of a super class designer to ensure that

subclass methods follow semantics, but it still leaves

some scope for restricting what a subclass method can

change. Other languages like C++ and Java leave this

upto the programmer’s discretion.

4.1.3 Violation of Encapsulation

To supporting reuse, inheritance allows developer to

program generalization relationships. For example, a

vehicle is a concept which can be specialized either

as a car or as a truck. This is supported by allowing

methods to be overridden. This extension causes

inheritance to work against the encapsulation.

Encapsulation requires a well defined interface

between a class and its clients. Clients are allowed to

access only to the certain services and no other.

However, inheritance introduces another kind of

clients for a class services. The descendants are

allowed to access the almost all the base class

attributes violating encapsulation. Violations for

encapsulation can have significant impact to code

maintainability and also the freedom of the class

designer in modifying the base class. This can be

addressed by defining a well defined interface for the

descendants. Languages like C++ and Java allows

control of interface to the descendants. Keywords

like protected, private and public can be applied to

methods to control their visibility to the descendants.

A public feature is visible to all classes. A private

feature is visible to no other class. A protected feature

is visible to a class and There is no method by which

C++ or Java can make features public only to some

classes . When a class is inherited the visibility

constraints are also inherited by the subclass. The

subclass can access the protected variables, but it

cannot access the private features. The subclass can

decrease the visibility by making the public features

protected or private. The feature visibility cannot be

increased. From the maintenance perspective,

protected features do not help much. Protected

features are visible to subclasses, making any changes

to the features would be hard. A private feature is not

visible even to the sub class and may be the best for

future extensibility of the class. Eiffel takes a

different approach in handling the feature visibility

and Each feature in a class can be separately exported

to any set of classes including the null set. When a

feature is visible to a class, it is visible to the

descendants. If a feature is visible to “None”, then

this is considered a private variable. A feature

exported to “Any” is visible to all classes. This is

because the “Any” class is the root class for the single

tree class hierarchy in Eiffel. When a subclass

inherits the features, these visibility constraints are

also inherited. However, the subclass is allowed to

redefine the constraints arbitrarily. In contrast, a

subclass in C++ and Java can never weaken the

constraint set by the parent class. Hence, Eiffel sub

classes have power to adjust visibility of each feature

selectively unlike in C++ or Java. Small talk has no

features for encapsulation. All its features are public

and visible to all classes.

4.1.4 Miscellaneous Issues in Inheritance

Inheritance has adverse effect on synchronization

requirements of a concurrent object. The concurrent

object-oriented community has named this

“inheritance anomaly”. When a class with

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 193

synchronized code is derived, it necessitates

redefinition of the inherited methods in order to

preserve the synchronization requirements, and this

denies the “reuse” benefit of inheritance. This is seen

in COOL languages like Java. Java uses monitors for

synchronized methods and exhibits the anomaly

described as “history dependent anomaly” [25].

4.2 Multiple Inheritance

Multiple inheritance allows a class to inherit from

multiple parent classes. There are many situations in

which multiple inheritance is required to clarify a

design. A person that is both a doctor and an author,

for example, can be properly modelled by designing a

class that inherits from both the “doctor” and the

“author” classes. This model is more closely parallels

inheritance as observed in the biological beings. This

introduces new issues and has been subject of

controversy. When a class inherits from multiple

classes, the class is not likely to be “is-a” version of

any of the parent classes. A programmer can use

multiple inheritance to reuse from potentially

unrelated classes. As discussed before, inheritance

weakens encapsulation of the base classes and

multiple inheritance increases this risk considerably.

In addition to this objection, there are other

interesting reasons why multiple inheritance is a

problem. These problems occur due to the fact that

multiple inheritance defines an inheritance graph

that is structured as a directed acyclic graph (DAG)

and not a tree. In a tree there is a path from any

derived class to any ancestor node. But in a DAG

structure, there can be multiple paths between a

subclass and its ancestors. Now when subclass refers

to an inherited feature name, searching for this

feature name poses significant problems.

Types of Inheritance:

● Tree-Based Inheritance

● Graph-Based Inheritance

● Linearized Inheritance

● Alternatives to Multiple Inheritance

V. POLYMORPHISM

Polymorphism allows programmers to write

functions and classes that work uniformly with

different types, and the different notions of what a

type is give rise to different from of polymorphism

[18]. Ad-hoc polymorphism is obtained when a

function works, or appears to work, on several

different types and may behave in unrelated way for

each type. Universal polymorphism a class or a

function behaves in the same way on infinitely many

types. The main difference between ad-hoc

polymorphism and universal polymorphism is that

ad-hoc polymorphic functions execute distinct code

for a small set of potentially unrelated types, while

universal polymorphic functions execute the same

code for an infinite number of types.

There are two major kinds of ad-hoc polymorphism

they are overloading and coercion. Overloading

polymorphism refers to the use of a common

function name (including symbolic names in the case

of operators) to refer to different actual functions that

are distinguished with respect to the types and the

number of the arguments. Coercion polymorphism

allows for a value of one type to be converted to a

value of another. The distinction between

overloading and coercion polymorphism in many

cases is not very clear and depends on the

implementation, in particular, when considering

untyped languages and interpreted languages.

5.1 Overloading

Overloading polymorphism refers to the use of a

common function name (including symbolic names

in the case of operators) to refer to different actual

functions that are distinguished with respect to the

types and the number of the arguments [8]. In our

discussion we distinguish between operator

overloading and method overloading.

Operator Overloading allows for some operators to

have different implementations depending on the

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 194

types of the arguments. For example, operators such

as ’+’ and ’*’ are applicable to both integer and real

arguments. Operator overloading is also known as the

ability of a programmer to define operators (such

as ’+’, ’*’, and ’==’) for user-defined types. Operator

overloading is useful because it allows user defined

types to behave as the types built-in the language.

New operators cannot be created, only the

functionality of the existing operators on objects can

be modified.

Of the languages under consideration, C++, C#, Eiffel,

Ruby and Python support operator overloading. To

make the use of operator overloading safer some

languages such as Ruby and Eiffel require that all

operations must be messages to objects (i.e. all

operators are always method calls) and that operators

must have an equivalent functional form, so that

using the operator as a method call will behave

precisely the same as using it in infix, prefix, or

postfix form [20, 14]. The support of these two

criteria allows for safer use of operator overloading.

Python only supports the criteria that all operators

must have an equivalent form, whereas C++ and C#

do not support either of the above criteria. Java only

allows operators for arithmetical operations to be

overloaded for all numeric types and string, but both

arguments must be of the same type. However, it is

not possible to give new meanings to the operators in

Java. Moreover, an unique feature of Eiffel is that

users can defined arbitrary operators, rather than

being limited to redefining a set of predefined

operators.

Method Overloading is the ability of a class to have

two or more methods with the same name. In other

words, a method name is used to represent two or

more distinct methods, and calls to these methods are

disambiguated by the number and the types of the

arguments passed to the method (i.e. by the method

signature) [9]. Of the languages under consideration,

Java, C++ and C# allow method overloading and they

support it in a similar fashion. As long as the methods

signatures are different, the compiler treats methods

with overloaded names as though they had

completely different names. The compiler statically

(using early binding) determines what method code

is to be executed [18]. Moreover, in Java, C++ and C#

the overloading can happen when a method in a

superclass is inherited in a subclass that has a method

with the same name, but different signature. Then

the respective compilers again use early binding to

differentiate between the overloaded methods. Ruby,

Eiffel, Smalltalk and Python do not support method

overloading.

5.2 Coercion

Coercion is a semantic operation which is needed to

convert an argument of one type to the type expected

by a function [8]. For example, when an integer value

can be used where a real is expected, and vice versa.

Coercion can be provided statically, by automatically

inserting the required type conversion code between

arguments and functions at compile time, or the

necessary type conversions may have to be

determined dynamically by run-time tests on the

arguments. Coercions are essentially a form of

abbreviation which reduce program size and improve

program readability, but it may also cause subtle and

sometimes dangerous system errors. Coercion does

not achieve true polymorphism [9]. Although an

operator may appear to accept values of many types,

the values must be converted to some representation

before the operator can use them. Hence, the

operator really works on only one type.

5.3 Parametric Polymorphism

Parametric polymorphism is obtained when a

function works uniformly on a range of types, which

normally exhibit some common structure. It uses

type parameters to determine the type of the

argument for each application of the function or the

class. Functions and classes that exhibit parametric

polymorphism are also called generic functions and

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 195

classes, respectively. The primary benefit of

parametric polymorphism is that it allows statically

typed languages to retain their compile-time type

safety yet remain nearly as flexible as dynamically

typed languages. Dynamically typed languages such

as Smalltalk, Ruby and Python do not need

parameterized types in order to support generic

programming. Types are checked at runtime, and

thus dynamically typed languages which support

generic programming inherently. Hence, of the

languages that we considered parametric

polymorphism is only relevant for C++, C#, Java and

Eiffel. Eiffel in particular uses generics extensively a

mechanism for type safe generic containers and

algorithms. C++ templates are even more flexible,

having many uses apart from simple generic

containers, but are also much more complex [11].

5.4 Inclusion Polymorphism

Inclusion polymorphism models subtyping and

subclassing (inheritance) in object-oriented languages.

It refers to the capability of having an object’s specific

class/type not known until runtime. Moreover,

inclusion polymorpshim can be viewed as inclusion

of classes/types, where an object can belong to many

different types that need not to be disjoint. In other

words, it is the ability of different classes to respond

to the same message and each implement the method

appropriately [8]. For object-oriented programmers

polymorphism almost always means inclusion

polymorphism. Inclusion polymorphism is

implemented through dynamic binding. In the

context of object oriented languages, the dynamic

binding refers to runtime binding. Dynamic binding

is important whenever a child class has overridden a

method of the parent class, and the class of each

object in the program is not obvious at compile time.

VI. CONCLUSION

Object-oriented programming languages are used

across the world on many different projects and

applications. Mastery of the object-oriented paradigm

has become an essential part of any programmer’s

careers. The key features of the object-oriented

paradigm (abstraction, encapsulation, inheritance,

and polymorphism) have different flavors in the

various OOPLs available to the users. For example,

inheritance has been implemented in a variety of

ways by OOPLs. Some of these implementations

allow the inheritance to become a dangerous feature

for the software development and some provide

useful safeguards against such abuse. There is still lot

of work to be done not only to reach a common

representation for these crucial features of OOPLs,

but also to to find appropriate ways to implement

features such as inheritance and polymorphism to

avoid misuse. In the survey, we have only considered

a snapshot in the time of language evolution. The

current languages (Java, Python, Ruby, C# , etc)

would most likely add new features, which might

favor development of safer programs, or they might

bow to the popular pressure and add potentially

unsafe features into the languages (generics in Java).

Moreover, we believe that Eiffel should be

appreciated as a OOPL, which has a good balance of

features that provide programmers abundant safe

guards for stable design. A language feature by itself

is not a bad thing, as long as the language can provide

controls against abuse. It is clear that each language

has a 1 different priority and different reasons for

adding in features. This will keep the field of object-

oriented programming ripe for awhile with no clear

single best object-oriented language.

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 196

VII. REFERENCES

[1]. D.J. Armstrong. The quarks of object-oriented

development. Communications of the ACM,

49(2):123-128, 2006.

[2]. Isabelle Attali, Denis Caromel, and Sidi Ould

Ehmety. A natural semantics for eiffel dynamic

binding. ACM Trans. Program. Lang. Syst.,

18(6):711-729, 1996.

[3]. G. Bracha and W. Cook. Mixin-based

inheritance. In Proceedings of the European

conference on object-oriented programming on

Object-oriented programming systems,

languages, and applications, pages 303-311.

ACM New York, NY, USA, 1990.

[4]. K.B. Bruce, L. Petersen, and A. Fiech.

Subtyping is not a good match for object-

oriented languages. Lecture Notes in Computer

Science, 1241:104-127, 1997.

[5]. Kim B. Bruce. Foundations of object-oriented

languages: types and semantics. MIT Press,

Cambridge, MA, USA, 2002.

[6]. Vinny Cahill and Donal Lafferty. Learning to

Program the Object-Oriented Way with C# .

Springer-Verlag New York, Inc., 2002.

[7]. Luiz Fernando Capretz. A brief history of the

object-oriented approach. SIGSOFT Softw. Eng.

Notes, 28(2):6, 2003.

[8]. Luca Cardelli and Peter Wegner. On

understanding types, data abstraction, and

polymorphism. ACM Comput. Surv., 17(4):471-

523, 1985.

[9]. Iain Craig. The Interpretation of Object-

Oriented Programming Languages. Springer-

Verlag New York, Inc., Secaucus, NJ, USA,

2001.

[10]. I.D. Craig. Programming in Dylan. Springer-

Verlag New York, Inc. Secaucus, NJ, USA,

1997.

[11]. T. V. Cutsem. Eiffel and c++: A comparison

between object oriented languages.

http://prog.vub.ac.be/ tvcutsem/publications/oo

comparison.pdf.

[12]. S.H. Edwards. Inheritance: One mechanism,

many conflicting uses. In Proc. 6th Ann.

Workshop on Software Reuse.

[13]. Margaret A. Ellis and Bjarne Stroustrup. The

annotated C++ reference manual. Addison-

Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1990.

[14]. D. Flanagan and Y. Matsumoto. The ruby

programming language. O’Reilly Media, Inc.,

2008.

[15]. Jerry Gao, Chris Chen, Y. Toyoshima, David

Kung, and Pei Hsia. Identifying polymorphism

change and impact in object-orientated

software maintenance. Journal of Software

Maintenance, 8(6):357-387, 1996.

[16]. J. Gosling, B. Joy, G. Steele, and G. Bracha. Java

(TM) Language Specification, The (Java

(Addison-Wesley)). Addison-Wesley

Professional, 2005.

[17]. H. Schmidt. C/C++ Programmer’s Reference.

McGraw-Hill, 2003.

[18]. K. Henney. Promoting Polymorphism, 2001.

[19]. D.H.H. Ingalls. The Smalltalk-76 programming

system design and implementation. In

Proceedings of the 5th ACM SIGACT-

SIGPLAN symposium on Principles of

programming languages, pages 9- 16. ACM

Press New York, NY, USA, 1978.

[20]. Ian Joyner. Objects Unencapsulted: Java, Eiffel,

and C++?? Prentice-Hall, Inc., Upper Saddle

River, NJ, USA, 1999.

[21]. D. Kaustub and D. Grimes. A comparison of

object oriented scripting languages: Python and

Ruby, 2001.

[22]. B.B. Kristensen, O.L. Madsen, B. Moller-

Pedersen, and K. Nygaard. The BETA

programming language. MIT Press Cambridge,

MA, USA, 1987.

[23]. H. Lieberman. Using prototypical objects to

implement shared behavior in object-oriented

http://www.ijsrcseit.com/

Volume 5, Issue 2, March-April -2019 | http://ijsrcseit.com

M. Surya, S. Padmavathi et al Int J Sci Res CSE & IT. March-April-2019 ; 5(2) : 187-197

 197

systems. In Proceedings of the 1986 conference

on Object-oriented programming systems,

languages, and applications, volume 21, pages

214-223. ACM New York, NY, USA, 1986.

[24]. Juval Lowy. An Introduction to C# Generics.

Technical report, Visual Studio 2005 Technical

Articles, 2005.

[25]. S. Matsuoka and A. Yonezawa. Analysis of

inheritance anomaly in object-oriented

concurrent programming languages. 1993.

Cite this article as :

M. Surya, S. Padmavathi, "A Survey of Object-

Oriented Programming Languages", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 5 Issue 2, pp.

187-197, March-April 2019.

Journal URL : http://ijsrcseit.com/CSEIT195248

http://www.ijsrcseit.com/
http://ijsrcseit.com/CSEIT195248
http://ijsrcseit.com/CSEIT195248

