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ABSTRACT 

 

With embedded processor technology moving towards faster and smaller processors and systems on a chip, it 

becomes increasingly difficult to accurately evaluate real time performance. This research describes an 

evaluation method using an embedded architecture software emulator that models the Motorola M-CORE 

processor architecture. This emulator is used to evaluate and compare the real-time performance of a public-

domain experimental Real-Time Operating System (RTOS) against a bare-bones multi-rate task scheduler. The 

results of the experiment, as shown in arrival time JITTER, response-time DELAY, and CPU BREAKDOWN 

figures, show the trade-offs between job load, job frequency, and kernel overhead. This research suggests full-

system software emulation to be a valid method of evaluating embedded systems’ behavior and real-time 

performance. 

Keywords :  Embedded System, Real-Time Operating System , JITTER 

 

I. INTRODUCTION 

 

With embedded processor technology moving 

towards faster and smaller processors and systems on 

a chip, it becomes increasingly difficult to accurately 

evaluate real time performance. Probing a piece of 

silicon, or accurately measuring values approaching 

less than one nanosecond becomes more expensive 

and more difficult, if not impossible. It becomes 

necessary to find additional methods to evaluate and 

debug embedded system. 

 

Embedded Systems 

 

Embedded systems has become a buzz word in the 

last five years, but embedded systems and processors 

have been around for much longer than that. One 

only needs to look around to see embedded systems 

everywhere: cell phones, alarm clocks, personal data 

assistants (PDAs), automobile subsystems such as ABS 

and cruise control, etc. This section takes a look at 

embedded systems, the issues and tools involved in 

their design, current trends, and how they can 

benefit from the research performed for this report. 

 

 Hardware/Software Codesign 

 

One of the methodologies gaining wide acceptance in 

both the embedded world and the general purpose 

world is that of Hardware/Software codesign. This 

section first defines the concept and then the 

methodology of Hardware/Software codesign. Then a 

slightly different method of codesign is described. 

This section is concluded with how 
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Hardware/Software Codesign can benefit from the 

emulator developed in this research. 

 

Hardware/Software Codesign: The Concept 

 

For years, designers have partitioned systems into 

hardware and software components that were 

developed separately. When this is done, the 

hardware designers usually make architectural 

choices early in the design process. These decisions 

are based on their knowledge of the hardware 

requirements and their limited knowledge and 

understanding of the software requirements. And 

they are usually hard pressed to go back and make 

changes to these choices. The result is that often the 

software designers are forced to make up for 

problems in the hardware through additional work of 

the software, often leading to a less than optimal 

overall design of the system. 

 

The concept of Hardware/Software Codesign is that 

of both hardware and software designers work 

together to develop a system, whether that system be 

an embedded one, a general purpose one, or high 

performance one. From specification of the 

requirements to exploration of the design space, and 

from development of the physical design to the 

simulation and test of the final product, hardware 

and software designers work cooperatively, 

concurrently, and most importantly, they 

communicate. 

 

Hardware/Software Codesign: The Methodology 

 

In response to these problems listed above, designers 

as well as EDA tool manufacturers are moving 

towards a design methodology that has hardware and 

software engineers working together from the 

beginning of the specification phase all the way 

through simulation and test. In hardware/software 

codesign, designers from both disciplines integrate 

their work. The process begins with a functional 

exploration of the project that they are undertaking. 

The designers define requirements and create a 

working specification. Then the hardware and 

software designers work together to map this 

specification on hardware and software architectures. 

The designers then implement these architectures 

onto silicon and code and come back together to 

simulate and test. The entire process benefits from 

open communication from both sides 

 

Real-Time Operating Systems 

 

Real-Time Operating Systems (RTOS) are commonly 

used in the development, productizing, and 

deployment of embedded systems. Unlike the world 

of general purpose computing, real-time systems are 

usually developed for a limited number of tasks and 

have different requirements of their operating 

systems. This section first gives the requirements of 

real-time operating systems, then breaks down the 

internals of RTOSs and explains them in detail. This 

section concludes with how the emulator developed 

in this research would aid in the evaluation of 

RTOSs. 

. 

The SimOS Approach 

 

SimOS is a full-system simulation environment that 

is capable of modeling computer hardware in enough 

detail to run a complete operating system, and all of 

the applications running on that operating system, on 

top of it. The SimOS project started in 1992, and was 

built to study the execution behavior of modern 

workloads. It is capable of studying both 

uniprocessors and multiprocessor systems and is used 

to study and evaluate the performance of high-

performance and general purpose computers. 

 

The SimOS environment is a simulation layer that 

runs on top of general-purpose Unix multiprocessors 

such as the Silicon Graphics Inc. Challenge series 

[40]. On top of that general purpose multiprocessor 
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system is the operating system running on that 

hardware, and in this case, it is IRIX version 5.x. On 

top of this software is run the SimOS environment. 

The SimOS environment takes in a hardware 

description file and is capable of modeling 

uniprocessors, multiprocessors, RAM, Ethernet, hard 

disk, and other pieces of hardware associated with 

today’s hardware platforms. On top of the SimOS is 

run an operating system that has been ported to the 

hardware platform that the SimOS environment is 

currently modeling. Finally, on top of that operating 

system is run the unaltered applications programs. 

All of this can be seen in Figure 1.  

 

One of the advantages of the SimOS operating 

systems is that it allows the user to choose which 

level of output detail in which to simulate. The 

system offers a simple trade-off of speed versus detail 

of simulation. If the user is interested in obtaining 

detail simulation results of a particular program, 

SimOS employs slower, more detailed simulation. 

And when the user wishes to run an application for 

long periods of time 

 

 
 

Figure 1: The SimOS Environment 

 

This figure shows the layout of the SimOS 

development environment. The SimOS target 

hardware layer runs on top of a Unix Operating 

System running on a R4000-based SGI multiprocessor 

workstation. On top of the SimOS environment is 

run the target Operating System and any applications 

that are run on top of that Operating System. 

 

Instead of for detailed simulation results, SimOS can 

scan over unimportant parts of the workload. Also, 

SimOS allows the user to modify this choice on-the-

fly. The user can choose certain sections of code that 

he is interested in seeing the simulation results for, 

and scan over the rest of the code as unimportant. 

 

Emulator  

 

For this project, Motorola’s M-CORE architecture 

was used as the model architecture for our emulator. 

This architecture was chosen because the M-CORE 

architecture is one of the cutting edge embedded 

processors on the market today, and the M-CORE 

was designed for high performance and low power 

operation. In this chapter, first the M-CORE 

architecture is described, followed by the specifics of 

the emulator, how it works, what information it 

takes as an input, how it processes that information, 

and what information it outputs during the 

emulation. Finally, the method used to validate the 

emulator is described. Figure 2 shows a system view 

of the emulator and both the hardware and operating 

system that it is running on and the Real-Time 

Operating System and applications that are running 

on it. 

 

 M-CORE Architecture 

 

The Motorola M-CORE architecture is a 32-bit 

Load/Store architecture with a fixed 16-bit 

instruction length and 32-bit data length. Figure 3 

shows all of the available instruction formats in the 

M-CORE architecture. It has a 16 entry 32-bit 

general register file, a 16 entry 32-bit alternate 

register file to allow fast interrupt support, and a 13 
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entry control register file accessible only by the 

supervisor mode. Its execution pipeline’s four stages 

are completely hidden from the application software. 

Most instructions execute in a single cycle with two 

cycle execution for loads, stores, and taken branches 

and jumps. 

 

 
 

Figure 2: The Emulation Environment 

 

This figure shows the emulation environment 

developed in this work for real-time system 

evaluation. The emulator runs on top of the Sun 

Solaris Operating System, running on top of a x86 

Processor. On top of the emulator is run the target 

Real-Time Operating System, either Echidna or NOS. 

On top of the RTOS, the benchmark applications are 

run. 

 

The address space is byte, half word, and word 

addressable, and allows both fast and normal 

interrupts, allowing those interrupts to be either 

vectored and auto vectored interrupts. The pipeline 

for the M-CORE consists of four stages: instruction 

fetch, instruction decode/register file read, execute, 

and write back. All of these stages operate 

simultaneously, making single cycle instructions 

possible. All sixteen general purposes registers can be 

used as source operands and instruction results (i.e. it 

is an orthogonal register file). 

 

Echidna RTOS 

 

Echidna is a cooperative multitasking Real-Time 

Operating System that is based on the Chimera [48] 

operating system developed at the Advanced 

Manipulators Laboratory at Carnegie Mellon 

University. A smaller version of Chimera (~6KB 

footprint), Echidna swaps Chimera’s POSIX-like 

threads in the microkernel for port-based objects and 

supports reconfigurable component-based software 

for microcontrollers and digital signal processors [10]. 

 

The traditional coding method used by most of 

today’s real-time operating systems is that processes 

are created, each with their own main(). Each of 

these processes executes their own user code and 

controls the flow of the program. This process calls 

upon the operating system whenever an operating 

system service is needed. These services include 

communication, time control, the creation of new 

processes, and synchronization. 

The port-based object method, on the other hand, 

gives a consistent structure for every process, and 

thus operating system services as listed above are 

performed in a predictable manner. Only when 

necessary, the operating system calls a port-based 

object’s method to perform user-defined functions. 

 

In this port-based object model, each independent 

object does not need to explicitly communicate or 

synchronize with any other component in the 

system, making integration very easy. When an 

object needs information, it obtains that information 

from its input ports. When that object generates 

information that needs to be passed on to either 

another process, or to a future invocation of itself, it 

sends that information to its output ports. The 

information on these ports is stored in shared 

memory so data can be sent between objects. 

 

Echidna was designed to support dynamically 

reconfigurable real-time software and was targeted to 

run on 8 to 32 bit microcontrollers as well as DSPs 

[49]. Like Chimera, Echidna provides cooperative 

multitasking, but unlike Chimera, it offers a good 

deal of functionality in a relatively small footprint, 
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and therefore it is a good candidate for this study in 

real-time performance in embedded systems. 

 

Non-Operating System 

 

The Non-Operating System (NOS) is a bare-bones, 

fixed priority, multi-rate executive similar to a real-

time operating system that an embedded-systems 

designer might create on the fly. Although not a full 

operating system, just a task scheduler, NOS 

represents the attainable performance limit of a non-

preemptive RTOS. 

 

A multi-rate executive scheduler was chosen over 

something simpler, such as a basic cyclic executive or 

a time-driven cyclic executive scheduler [27], 

because we needed the ability to have several jobs 

that had different frequencies, and the timing of the 

multirole executive is less independent on the code 

size of the jobs run upon it, which is important 

because each of the benchmarks to be run is contains 

a different amount of code. 

 

JITTER 

 

JITTER measurements represent the time deltas 

between successive outputs seen at the I/O ports for a 

given task. When more than one task is running, 

each task is assigned a separate I/O port to write to, 

enabling the distinction between tasks. On those 

runs, the jitter information for each of the tasks is 

combined into a single set of data points. 

 

All of the graphs shown are probability density 

graphs, centered on the desired period. Negative 

numbers along the x-axis represent tasks that have 

run early, and positive numbers represent tasks that 

have run late, in relation to the previous task. To 

maintain readable graphs, only non-zero y-values 

have been shown, and all of the values have been 

grouped into 100ms intervals. 

 

Delay 

 

The delay measurements represent the time between 

an external interrupt generating an aperiodic IPC and 

the corresponding output to an I/O port from the 

responding thread. Therefore, this delay measures the 

response time of the system in terms of when the first 

reaction to an interrupt could take place. 

Neither Echidna nor NOS handles interrupts 

preemptively; both use a polling technique. The 

difference is that Echidna has a periodic thread that is 

scheduled to run every 1ms to check for an interrupt, 

and if one is found, respond to it; NOS checks to see 

if an interrupt has occurred only when the system is 

idle: If the system is either busy or overloaded, an 

interrupt will be ignored, perhaps indefinitely, unless 

the system returns to an idle state and checks to see if 

an interrupt is waiting. 

 

An important difference to note between the values 

obtained for the Jitter graphs and the values obtained 

for the Delay graphs is that the values on the delay 

graphs are grouped into intervals of 10ms, instead of 

100ms like in the Jitter graphs. This is done because 

in many of the Delay graphs, all of the values would 

fit into the first 100ms, but would give several points 

in a 10ms interval graph. 

 

CPU Breakdown 

 

The CPU breakdown graphs show the amount of 

time spent by the system in kernel, application, 

interrupt handling, and idle portions of the code. 

Two different types of graphs are those with a 

constant task period, while varying the number of 

tasks that are being run; those with a constant 

number of tasks running, while varying the 

frequency that those tasks are running at. On each 

graph, there are three distinct groups of data. The 

first group is the calculated theoretical limit of a 

system running the application code. This group only 

contains application and idle segments, and the 
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values are calculated by multiplying the number of 

tasks to be run at that frequency by the time it takes 

to run a single task. The second group of bar graphs 

shows the CPU breakdowns for the runs on NOS. 

The final group of bar graphs is the CPU breakdowns 

for those runs on the Echidna RTOS. As with the 

Delay graphs, only the results from simulations of 

IPC and FIR are shown, as the results from UP and 

DOWN fall in between them. 

 

Analysis Summary 

 

This experiment has evaluated three aspects of real-

time behavior: jitter, delay, and CPU breakdown. 

With Jitter, it was observed that as the number of 

tasks is increased, the amount of scheduling overhead 

incurred is increased, more so with Echidna than 

NOS. With IPC, UP, and DOWN, the limit for 

Echidna is reached when 8 tasks are running at 

periods of 1ms (or 2/1ms, or 1/2ms), while NOS can 

continue to run on time for periods lower than that 

of Echidna’s limit. For FIR, scheduling overhead is 

only one factor in calculating the limit, and both 

NOS and Echidna reach a limit of 8 tasks running at 

2ms, or 4 tasks running at 1ms. For Echidna runs, if 

there is any background load, the data points start to 

move away from the origin, but the average run is 

still on time. For NOS, the background has very little 

affected. 

 

With delay, when a system has a light load, both 

Echidna and NOS are able to service the interrupt 

immediately (within 1ms is as fast as Echidna can 

check the interrupt). However, if the system is 

running with a significant load, Echidna can take up 

to four times as long to service the interrupt, and 

NOS has the possibility of dropping the interrupt 

entirely. Addition of the control loop has very little 

affected on these characteristics.                                                                                                                             

 

With CPU breakdown, several things were seen. 

Interrupt handling overhead was insignificant 

because both RTOSs use polling. On the systems 

where applications are not computationally intensive 

it is cheaper to run fewer applications at a faster 

period than to run more applications at a slower 

period. And once the system is overloaded it 

gravitates to an optimal ratio of kernel versus user 

time. 

 

Conclusions 

 

This report has presented a method of using full-

system emulation to evaluate the real-time 

performance of an embedded system. An embedded 

architecture emulator was created, using the C 

programming language, that emulates the Motorola 

M-CORE embedded processor down to the register 

level and is accurate to within 100 cycles per million 

as compared to actual hardware. With tests and 

experiments run on this emulator, the goal of this 

report was to show that this method can be 

successfully used in the evaluation of embedded 

systems. 

 

A study of non-preemptive real-time operating 

systems was presented, focusing on Echidna, a small, 

public domain RTOS, and comparing it to NOS, a 

bare-bones scheduler that represents the 

performance limit for non-preemptive RTOSs. Three 

different real-time performance characteristics were 

measured: JITTER, DELAY, and CPU USAGE. 

 

With Jitter, it was observed that as the number of 

tasks was increased, the amount of scheduling 

overhead incurred was increased, more so with 

Echidna than NOS. With IPC, UP, and DOWN, the 

limit for Echidna is reached when 8 tasks are running 

at periods of 1ms (or 2/1ms, or 1/2ms), while NOS 

can continue to run on time for periods lower than 

that of Echidna’s limit. For FIR, scheduling overhead 

is only one factor in calculating the limit, and both 

NOS and Echidna reach a limit of 8 tasks running at 

2ms, or 4 tasks running at 1ms. For Echidna runs, if 
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there is any background load, the data points start to 

move away from the origin, but the average run is 

still on time. For NOS, the background has very little 

affected. With delay, when a system has a light load, 

both Echidna and NOS are able to service the 

interrupt immediately (within 1ms is as fast as 

Echidna can check the interrupt). However, if the 

system is running with a significant load, Echidna 

can take up to four times as long to service the 

interrupt, and NOS has the possibility of dropping 

the interrupt entirely. The addition of background 

load has very little affected on these characteristics. 

With CPU breakdown, several things were seen. 

Interrupt handling overhead was insignificant 

because both RTOSs use polling. On the systems 

where applications are not computational-intensive, 

it is cheaper to run fewer applications at a faster 

period than to run more applications at a slower 

period. Once the system is overloaded it gravitates to 

an optimal ratio of kernel versus user time. 

 

II. CONCLUSION 

 

All of the results obtained in this report could have 

been obtained using other methods, such as using a 

logic analyzer to obtain those signals that leave the 

chip (i/o signals) or using breakpoint instructions to 

bring off-chip those signals that do not normally 

leave the chip (register contents). However, those 

signals that could be obtained with the logic analyzer 

can only be obtained in this particular instance 

because an evaluation board of the M-CORE was 

used in which the components were discrete parts on 

a printed circuit board, rather than logic blocks on an 

integrated circuit. The M-CORE processors used in 

industry are systems on a chip, and therefore those 

signals would not leave the chip. For those signals 

that are brought off-chip using the breakpoint 

instruction, this incurs its own penalty, both slowing 

the system down, as well as modifying some of the 

register values. This report is a tool thesis. It presents 

the emulator, describes how it works, and then 

provides an experiment to validate it. 

 

With the tests and experiments run on this emulator, 

the report and the research that has lead up to it has 

shown that this method can be successfully used as 

an additional method in the evaluation of embedded 

systems. 
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