
CSEIT1953166 | Received : 20 May 2019 | Accepted : 19 June 2019 | May-June -2019 [5 (3) : 521-528]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 3 | ISSN : 2456-3307

DOI : 10.32628/CSEIT1953166

521

Evaluation of Embedded System Behaviour Using Full-System
Software

Swati Singh

Department of Computer Science and Engineering, Saraswati Higher Education and Technical College of

Engineering, Varanasi, Uttar Pradesh, India

ABSTRACT

With embedded processor technology moving towards faster and smaller processors and systems on a chip, it

becomes increasingly difficult to accurately evaluate real time performance. This research describes an

evaluation method using an embedded architecture software emulator that models the Motorola M-CORE

processor architecture. This emulator is used to evaluate and compare the real-time performance of a public-

domain experimental Real-Time Operating System (RTOS) against a bare-bones multi-rate task scheduler. The

results of the experiment, as shown in arrival time JITTER, response-time DELAY, and CPU BREAKDOWN

figures, show the trade-offs between job load, job frequency, and kernel overhead. This research suggests full-

system software emulation to be a valid method of evaluating embedded systems’ behavior and real-time

performance.

Keywords : Embedded System, Real-Time Operating System , JITTER

I. INTRODUCTION

With embedded processor technology moving

towards faster and smaller processors and systems on

a chip, it becomes increasingly difficult to accurately

evaluate real time performance. Probing a piece of

silicon, or accurately measuring values approaching

less than one nanosecond becomes more expensive

and more difficult, if not impossible. It becomes

necessary to find additional methods to evaluate and

debug embedded system.

Embedded Systems

Embedded systems has become a buzz word in the

last five years, but embedded systems and processors

have been around for much longer than that. One

only needs to look around to see embedded systems

everywhere: cell phones, alarm clocks, personal data

assistants (PDAs), automobile subsystems such as ABS

and cruise control, etc. This section takes a look at

embedded systems, the issues and tools involved in

their design, current trends, and how they can

benefit from the research performed for this report.

 Hardware/Software Codesign

One of the methodologies gaining wide acceptance in

both the embedded world and the general purpose

world is that of Hardware/Software codesign. This

section first defines the concept and then the

methodology of Hardware/Software codesign. Then a

slightly different method of codesign is described.

This section is concluded with how

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Swati Singh Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 521-528

 522

Hardware/Software Codesign can benefit from the

emulator developed in this research.

Hardware/Software Codesign: The Concept

For years, designers have partitioned systems into

hardware and software components that were

developed separately. When this is done, the

hardware designers usually make architectural

choices early in the design process. These decisions

are based on their knowledge of the hardware

requirements and their limited knowledge and

understanding of the software requirements. And

they are usually hard pressed to go back and make

changes to these choices. The result is that often the

software designers are forced to make up for

problems in the hardware through additional work of

the software, often leading to a less than optimal

overall design of the system.

The concept of Hardware/Software Codesign is that

of both hardware and software designers work

together to develop a system, whether that system be

an embedded one, a general purpose one, or high

performance one. From specification of the

requirements to exploration of the design space, and

from development of the physical design to the

simulation and test of the final product, hardware

and software designers work cooperatively,

concurrently, and most importantly, they

communicate.

Hardware/Software Codesign: The Methodology

In response to these problems listed above, designers

as well as EDA tool manufacturers are moving

towards a design methodology that has hardware and

software engineers working together from the

beginning of the specification phase all the way

through simulation and test. In hardware/software

codesign, designers from both disciplines integrate

their work. The process begins with a functional

exploration of the project that they are undertaking.

The designers define requirements and create a

working specification. Then the hardware and

software designers work together to map this

specification on hardware and software architectures.

The designers then implement these architectures

onto silicon and code and come back together to

simulate and test. The entire process benefits from

open communication from both sides

Real-Time Operating Systems

Real-Time Operating Systems (RTOS) are commonly

used in the development, productizing, and

deployment of embedded systems. Unlike the world

of general purpose computing, real-time systems are

usually developed for a limited number of tasks and

have different requirements of their operating

systems. This section first gives the requirements of

real-time operating systems, then breaks down the

internals of RTOSs and explains them in detail. This

section concludes with how the emulator developed

in this research would aid in the evaluation of

RTOSs.

.

The SimOS Approach

SimOS is a full-system simulation environment that

is capable of modeling computer hardware in enough

detail to run a complete operating system, and all of

the applications running on that operating system, on

top of it. The SimOS project started in 1992, and was

built to study the execution behavior of modern

workloads. It is capable of studying both

uniprocessors and multiprocessor systems and is used

to study and evaluate the performance of high-

performance and general purpose computers.

The SimOS environment is a simulation layer that

runs on top of general-purpose Unix multiprocessors

such as the Silicon Graphics Inc. Challenge series

[40]. On top of that general purpose multiprocessor

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Swati Singh Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 521-528

 523

system is the operating system running on that

hardware, and in this case, it is IRIX version 5.x. On

top of this software is run the SimOS environment.

The SimOS environment takes in a hardware

description file and is capable of modeling

uniprocessors, multiprocessors, RAM, Ethernet, hard

disk, and other pieces of hardware associated with

today’s hardware platforms. On top of the SimOS is

run an operating system that has been ported to the

hardware platform that the SimOS environment is

currently modeling. Finally, on top of that operating

system is run the unaltered applications programs.

All of this can be seen in Figure 1.

One of the advantages of the SimOS operating

systems is that it allows the user to choose which

level of output detail in which to simulate. The

system offers a simple trade-off of speed versus detail

of simulation. If the user is interested in obtaining

detail simulation results of a particular program,

SimOS employs slower, more detailed simulation.

And when the user wishes to run an application for

long periods of time

Figure 1: The SimOS Environment

This figure shows the layout of the SimOS

development environment. The SimOS target

hardware layer runs on top of a Unix Operating

System running on a R4000-based SGI multiprocessor

workstation. On top of the SimOS environment is

run the target Operating System and any applications

that are run on top of that Operating System.

Instead of for detailed simulation results, SimOS can

scan over unimportant parts of the workload. Also,

SimOS allows the user to modify this choice on-the-

fly. The user can choose certain sections of code that

he is interested in seeing the simulation results for,

and scan over the rest of the code as unimportant.

Emulator

For this project, Motorola’s M-CORE architecture

was used as the model architecture for our emulator.

This architecture was chosen because the M-CORE

architecture is one of the cutting edge embedded

processors on the market today, and the M-CORE

was designed for high performance and low power

operation. In this chapter, first the M-CORE

architecture is described, followed by the specifics of

the emulator, how it works, what information it

takes as an input, how it processes that information,

and what information it outputs during the

emulation. Finally, the method used to validate the

emulator is described. Figure 2 shows a system view

of the emulator and both the hardware and operating

system that it is running on and the Real-Time

Operating System and applications that are running

on it.

 M-CORE Architecture

The Motorola M-CORE architecture is a 32-bit

Load/Store architecture with a fixed 16-bit

instruction length and 32-bit data length. Figure 3

shows all of the available instruction formats in the

M-CORE architecture. It has a 16 entry 32-bit

general register file, a 16 entry 32-bit alternate

register file to allow fast interrupt support, and a 13

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Swati Singh Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 521-528

 524

entry control register file accessible only by the

supervisor mode. Its execution pipeline’s four stages

are completely hidden from the application software.

Most instructions execute in a single cycle with two

cycle execution for loads, stores, and taken branches

and jumps.

Figure 2: The Emulation Environment

This figure shows the emulation environment

developed in this work for real-time system

evaluation. The emulator runs on top of the Sun

Solaris Operating System, running on top of a x86

Processor. On top of the emulator is run the target

Real-Time Operating System, either Echidna or NOS.

On top of the RTOS, the benchmark applications are

run.

The address space is byte, half word, and word

addressable, and allows both fast and normal

interrupts, allowing those interrupts to be either

vectored and auto vectored interrupts. The pipeline

for the M-CORE consists of four stages: instruction

fetch, instruction decode/register file read, execute,

and write back. All of these stages operate

simultaneously, making single cycle instructions

possible. All sixteen general purposes registers can be

used as source operands and instruction results (i.e. it

is an orthogonal register file).

Echidna RTOS

Echidna is a cooperative multitasking Real-Time

Operating System that is based on the Chimera [48]

operating system developed at the Advanced

Manipulators Laboratory at Carnegie Mellon

University. A smaller version of Chimera (~6KB

footprint), Echidna swaps Chimera’s POSIX-like

threads in the microkernel for port-based objects and

supports reconfigurable component-based software

for microcontrollers and digital signal processors [10].

The traditional coding method used by most of

today’s real-time operating systems is that processes

are created, each with their own main(). Each of

these processes executes their own user code and

controls the flow of the program. This process calls

upon the operating system whenever an operating

system service is needed. These services include

communication, time control, the creation of new

processes, and synchronization.

The port-based object method, on the other hand,

gives a consistent structure for every process, and

thus operating system services as listed above are

performed in a predictable manner. Only when

necessary, the operating system calls a port-based

object’s method to perform user-defined functions.

In this port-based object model, each independent

object does not need to explicitly communicate or

synchronize with any other component in the

system, making integration very easy. When an

object needs information, it obtains that information

from its input ports. When that object generates

information that needs to be passed on to either

another process, or to a future invocation of itself, it

sends that information to its output ports. The

information on these ports is stored in shared

memory so data can be sent between objects.

Echidna was designed to support dynamically

reconfigurable real-time software and was targeted to

run on 8 to 32 bit microcontrollers as well as DSPs

[49]. Like Chimera, Echidna provides cooperative

multitasking, but unlike Chimera, it offers a good

deal of functionality in a relatively small footprint,

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Swati Singh Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 521-528

 525

and therefore it is a good candidate for this study in

real-time performance in embedded systems.

Non-Operating System

The Non-Operating System (NOS) is a bare-bones,

fixed priority, multi-rate executive similar to a real-

time operating system that an embedded-systems

designer might create on the fly. Although not a full

operating system, just a task scheduler, NOS

represents the attainable performance limit of a non-

preemptive RTOS.

A multi-rate executive scheduler was chosen over

something simpler, such as a basic cyclic executive or

a time-driven cyclic executive scheduler [27],

because we needed the ability to have several jobs

that had different frequencies, and the timing of the

multirole executive is less independent on the code

size of the jobs run upon it, which is important

because each of the benchmarks to be run is contains

a different amount of code.

JITTER

JITTER measurements represent the time deltas

between successive outputs seen at the I/O ports for a

given task. When more than one task is running,

each task is assigned a separate I/O port to write to,

enabling the distinction between tasks. On those

runs, the jitter information for each of the tasks is

combined into a single set of data points.

All of the graphs shown are probability density

graphs, centered on the desired period. Negative

numbers along the x-axis represent tasks that have

run early, and positive numbers represent tasks that

have run late, in relation to the previous task. To

maintain readable graphs, only non-zero y-values

have been shown, and all of the values have been

grouped into 100ms intervals.

Delay

The delay measurements represent the time between

an external interrupt generating an aperiodic IPC and

the corresponding output to an I/O port from the

responding thread. Therefore, this delay measures the

response time of the system in terms of when the first

reaction to an interrupt could take place.

Neither Echidna nor NOS handles interrupts

preemptively; both use a polling technique. The

difference is that Echidna has a periodic thread that is

scheduled to run every 1ms to check for an interrupt,

and if one is found, respond to it; NOS checks to see

if an interrupt has occurred only when the system is

idle: If the system is either busy or overloaded, an

interrupt will be ignored, perhaps indefinitely, unless

the system returns to an idle state and checks to see if

an interrupt is waiting.

An important difference to note between the values

obtained for the Jitter graphs and the values obtained

for the Delay graphs is that the values on the delay

graphs are grouped into intervals of 10ms, instead of

100ms like in the Jitter graphs. This is done because

in many of the Delay graphs, all of the values would

fit into the first 100ms, but would give several points

in a 10ms interval graph.

CPU Breakdown

The CPU breakdown graphs show the amount of

time spent by the system in kernel, application,

interrupt handling, and idle portions of the code.

Two different types of graphs are those with a

constant task period, while varying the number of

tasks that are being run; those with a constant

number of tasks running, while varying the

frequency that those tasks are running at. On each

graph, there are three distinct groups of data. The

first group is the calculated theoretical limit of a

system running the application code. This group only

contains application and idle segments, and the

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Swati Singh Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 521-528

 526

values are calculated by multiplying the number of

tasks to be run at that frequency by the time it takes

to run a single task. The second group of bar graphs

shows the CPU breakdowns for the runs on NOS.

The final group of bar graphs is the CPU breakdowns

for those runs on the Echidna RTOS. As with the

Delay graphs, only the results from simulations of

IPC and FIR are shown, as the results from UP and

DOWN fall in between them.

Analysis Summary

This experiment has evaluated three aspects of real-

time behavior: jitter, delay, and CPU breakdown.

With Jitter, it was observed that as the number of

tasks is increased, the amount of scheduling overhead

incurred is increased, more so with Echidna than

NOS. With IPC, UP, and DOWN, the limit for

Echidna is reached when 8 tasks are running at

periods of 1ms (or 2/1ms, or 1/2ms), while NOS can

continue to run on time for periods lower than that

of Echidna’s limit. For FIR, scheduling overhead is

only one factor in calculating the limit, and both

NOS and Echidna reach a limit of 8 tasks running at

2ms, or 4 tasks running at 1ms. For Echidna runs, if

there is any background load, the data points start to

move away from the origin, but the average run is

still on time. For NOS, the background has very little

affected.

With delay, when a system has a light load, both

Echidna and NOS are able to service the interrupt

immediately (within 1ms is as fast as Echidna can

check the interrupt). However, if the system is

running with a significant load, Echidna can take up

to four times as long to service the interrupt, and

NOS has the possibility of dropping the interrupt

entirely. Addition of the control loop has very little

affected on these characteristics.

With CPU breakdown, several things were seen.

Interrupt handling overhead was insignificant

because both RTOSs use polling. On the systems

where applications are not computationally intensive

it is cheaper to run fewer applications at a faster

period than to run more applications at a slower

period. And once the system is overloaded it

gravitates to an optimal ratio of kernel versus user

time.

Conclusions

This report has presented a method of using full-

system emulation to evaluate the real-time

performance of an embedded system. An embedded

architecture emulator was created, using the C

programming language, that emulates the Motorola

M-CORE embedded processor down to the register

level and is accurate to within 100 cycles per million

as compared to actual hardware. With tests and

experiments run on this emulator, the goal of this

report was to show that this method can be

successfully used in the evaluation of embedded

systems.

A study of non-preemptive real-time operating

systems was presented, focusing on Echidna, a small,

public domain RTOS, and comparing it to NOS, a

bare-bones scheduler that represents the

performance limit for non-preemptive RTOSs. Three

different real-time performance characteristics were

measured: JITTER, DELAY, and CPU USAGE.

With Jitter, it was observed that as the number of

tasks was increased, the amount of scheduling

overhead incurred was increased, more so with

Echidna than NOS. With IPC, UP, and DOWN, the

limit for Echidna is reached when 8 tasks are running

at periods of 1ms (or 2/1ms, or 1/2ms), while NOS

can continue to run on time for periods lower than

that of Echidna’s limit. For FIR, scheduling overhead

is only one factor in calculating the limit, and both

NOS and Echidna reach a limit of 8 tasks running at

2ms, or 4 tasks running at 1ms. For Echidna runs, if

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Swati Singh Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 521-528

 527

there is any background load, the data points start to

move away from the origin, but the average run is

still on time. For NOS, the background has very little

affected. With delay, when a system has a light load,

both Echidna and NOS are able to service the

interrupt immediately (within 1ms is as fast as

Echidna can check the interrupt). However, if the

system is running with a significant load, Echidna

can take up to four times as long to service the

interrupt, and NOS has the possibility of dropping

the interrupt entirely. The addition of background

load has very little affected on these characteristics.

With CPU breakdown, several things were seen.

Interrupt handling overhead was insignificant

because both RTOSs use polling. On the systems

where applications are not computational-intensive,

it is cheaper to run fewer applications at a faster

period than to run more applications at a slower

period. Once the system is overloaded it gravitates to

an optimal ratio of kernel versus user time.

II. CONCLUSION

All of the results obtained in this report could have

been obtained using other methods, such as using a

logic analyzer to obtain those signals that leave the

chip (i/o signals) or using breakpoint instructions to

bring off-chip those signals that do not normally

leave the chip (register contents). However, those

signals that could be obtained with the logic analyzer

can only be obtained in this particular instance

because an evaluation board of the M-CORE was

used in which the components were discrete parts on

a printed circuit board, rather than logic blocks on an

integrated circuit. The M-CORE processors used in

industry are systems on a chip, and therefore those

signals would not leave the chip. For those signals

that are brought off-chip using the breakpoint

instruction, this incurs its own penalty, both slowing

the system down, as well as modifying some of the

register values. This report is a tool thesis. It presents

the emulator, describes how it works, and then

provides an experiment to validate it.

With the tests and experiments run on this emulator,

the report and the research that has lead up to it has

shown that this method can be successfully used as

an additional method in the evaluation of embedded

systems.

III. ACKNOWLEDMENT

The author is grateful to Department of Computer

Science and Engineering, Saraswati Higher Education

and Technical College of Engineering, Varanasi for

rendering their support and help for completing the

work.

I. REFERENCES

[1] L. Abeni and G. Buttazzo. "Integrating

multimedia applications into hard real-time

systems." In Proc. IEEE Real-Time Systems

Symposium (RTSS), 1998.

[2] J. H. Anderson, et al. "Efficient object sharing

in quantum-based real-time systems." In Proc.

IEEE Real-Time Systems Symposium (RTSS),

1998.

[3] T. Anderson. "System-on-chip design with

virtual components." Circuit Cellar, No. 109,

pp. 12-19, August 1999.

[4] M. J. Bach. The Design of the Unix Operating

System. Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1986.

[5] S. R. Ball. Embedded Microprocessor Systems:

Real-World Design. Newnes, Butterworth-

Heinemann, Boston MA, 1996.

[6] L. A. Barroso, et al. "Memory system

characterization of commercial workloads." In

Proc. 25th Annual International Symposium

on Computer Architecture (ISCA ’98),

Barcelona, Spain, June 1998, pp. 3-14.

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Swati Singh Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 521-528

 528

[7] A. Bestavros and S. Nagy. "Value-cognizant

admission control for RTDB systems." In Proc.

IEEE Real-Time Systems Symposium (RTSS),

1996.

[8] M. Brockmeyer, et al. "A flexible, extensible

simulation environment for testing real-time

specifications." In Proc. IEEE Real-Time

Systems Symposium (RTSS), 1997.

[9] D&T Roundtable. "Hardware-Software

codesign." IEEE Design and Test of Computers,

Vol. 14, No. 1, pp 75-83, 1997.

[10] Echidna. Echidna: A Real-Time Operating

System to Support Reconfigurable Software on

Microcontrollers and Digital Signal Processors.

Software Engineering for Real-Time Systems

Laboratory, University of Maryland,

http://www.ece.umd.edu/serts/research/echid

na/index.shtml, 2000

Cite this article as :

Swati Singh, "Evaluation of Embedded System

Behaviour Using Full-System Software",

International Journal of Scientific Research in

Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume

5 Issue 3, pp. 521-528, May-June 2019.

Journal URL : http://ijsrcseit.com/CSEIT1953166

http://www.ijsrcseit.com/
http://ijsrcseit.com/CSEIT1953166

