
 CSEIT19539 | Received : 01 May 2019 | Accepted : 17 May 2019 | May-June -2019 [5 (3) : 92-100]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 3 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT19539

92

Storage Preservation Using Big Data Based Intelligent Compression Scheme
Ramya. S1, Gokula Krishnan. V2

1ME-Computer Science and Engineering, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil

Nadu, India
2Assistant Professor, Dhanalakshmi Srinivasan Engineering College, Perambalur, Tamil Nadu, India

ABSTRACT

Big data has reached a maturity that leads it into a productive phase. This means that most of the main issues

with big data have been addressed to a degree that storage has become interesting for full commercial

exploitation. However, concerns over data compression still prevent many users from migrating data to remote

storage. Client-side data compression in particular ensures that multiple uploads of the same content only

consume network bandwidth and storage space of a single upload. Compression is actively used by a number of

backup providers as well as various services. Unfortunately, compressed data is pseudorandom and thus cannot

be deduplicated: as a consequence, current schemes have to entirely sacrifice storage efficiency. In this system,

present a scheme that permits a more fine-grained trade-off. And present a novel idea that differentiates data

according to their popularity. Based on this idea, design a compression scheme that guarantees semantic storage

preservation for unpopular data and provides scalable data storage and bandwidth benefits for popular data. We

can implement variable data chunk similarity algorithm for analyze the chunks data and store the original data

with compressed format. And also includes the encryption algorithm to secure the data. Finally, can use the

backup recover system at the time of blocking and also analyze frequent login access system.

Keywords : Data Chunks, Similarity Matching, Parallel Processing, Data Security, Data Compression

I. INTRODUCTION

Now a day there is growth in information. With

infinite storage space provide by cloud service

provider users tend to use as much space as they can

and vendors constantly look for techniques aimed to

minimize redundant data and maximize space savings.

Users will access information according to their needs

and most users access same information again and

again, the cost of computation, application hosting,

content storage and delivery is reduced significantly.

The cloud makes it possible for you to access your

information from anywhere at any time. Cloud

provides benefits such as, flexibility, disastracter,

recovery, software updates automatically, pay- per-

use model and cost reduction.[3] While a traditional

computer setup requires you to be in the same

location as your data storage device, the cloud takes

away that step. The cloud removes the need for you

to be in the same physical location as the hardware

that stores your data. Each provider serves a specific

function, giving users more or less control over their

cloud depending on the type. Your cloud needs will

vary depending on how you intend to use the space

and resources associated with the cloud. Cloud

computing refers to the use of computers which

access Internet locations for computing power,

storage and applications, with no need for the

individual access points to maintain any of the

infrastructure. Data deduplication is a technique for

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT19539

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 93

reducing the amount of storage space an organization

needs to save its data. In most organizations, the

storage systems contain duplicate copies of many

pieces of data. For example, the same file may be

saved in several different places by different users, or

two or more files that aren't identical may still

include much of the same data. Along with low

ownership costs and flexibility, users require the

protection of their data and confidentiality

guarantees through encryption. To make data

management scalable deduplication we are use

Encryption for secure deduplication services.[1]

Unfortunately, deduplication and encryption are two

conflicting technologies. While the aim of

deduplication is to detect identical data segments and

store them only once, the result of encryption is to

make two identical data segments in distinguishable

after being encrypted. This means that if data are

encrypted by users in a standard way as like shared

authority, the cloud storage provider cannot apply

deduplication since two identical data segments will

be different after encryption. On the other hand, if

data are not encrypted by users, confidentiality by

cannot be guaranteed and data are not protected

against curious cloud storage providers. There are

two types of deduplication in terms of the size: (i)

file-level deduplication, which discovers

redundancies between different files and removes

these redundancies to reduce capacity demands, and

(ii) blocklevel deduplication, which discovers and

removes redundancies between data blocks. The file

can be divided into smaller fixed-size or variable-size

blocks. Using fixedsize blocks simplifies the

computations of block boundaries, while using

variable-size blocks. A technique which has been

proposed to meet these two conflicting requirements

is Tag generation and AES Scheme whereby the

encryption key is usually the result of the hash of the

data segment. Although encryption seems to be a

good candidate to achieve confidentiality and

deduplication at the same time, it unfortunately

suffers from various well-known weaknesses. The

confidentiality issue can be handled by encrypting

sensitive data before outsourcing to remote servers.

Along with low ownership costs and flexibility, users

require the protection of their data and

confidentiality guarantees through encryption. In

this paper, we address the a for mentioned privacy

issue to propose a shared authority to the files which

Deduplicted based privacy preserving authentication

for the cloud data storage, which realizes

authentication and authorization without

compromising a user’s private information. The basic

data chunk similarity is shown in fig 1.

Fig 1 : Data chunk similarity

II. RELATED WORK

L. Wang,et.al,…[1] proposed an innovative public

cloud usage model for small-to medium scale

scientific communities to utilize elastic resources on a

public cloud site while maintaining their flexible

system controls, i.e., create, activate, suspend, resume,

deactivate, and destroy their high-level management

entities—service management layers without

knowing the details of management. Second, we

design and implement an innovative system—

DawningCloud, at the core of which are lightweight

service management layers running on top of a

common management service framework. The

common management service framework of

DawningCloud not only facilitates building

lightweight service management layers for

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 94

heterogeneous workloads, but also makes their

management tasks simple. Third, we evaluate the

systems comprehensively using both emulation and

real experiments.

B. Li,et.al,…[2] took a step towards bringing the

many benefits of the MapReduce model to

incremental one-pass analytics. In the new model,

the MapReduce system reads input data only once,

performs incremental processing as more data is read,

and utilizes system resources efficiently to achieve

high performance and scalability. The goal is to

design a platform to support such scalable,

incremental one-pass analytics. This platform can be

used to support interactive data analysis, which may

involve online aggregation with early approximate

answers, and, in the future, stream query processing,

which provides near real-time insights as new data

arrives. We argue that, in order to support

incremental one-pass analytics, a MapReduce system

should avoid any blocking operations and also

computational and I/O bottlenecks that prevent data

from “smoothly” flowing through map and reduce

phases on the processing pipeline.

R. Kienzler,et.al,…[3] propose an incremental data

access and processing approach for data-intensive

cloud applications that can hide data transfer

latencies while maintaining linear scalability. Similar

in spirit to pipelined query evaluation in traditional

database systems, data is accessed and processed in

small increments, thereby propagating data chunks

from one stage of the data analysis task to another as

soon as they are available instead of waiting until the

whole dataset becomes available. This way we can

process data mostly in memory (hence, reduce time-

consuming I/O to local disk and cloud storage, and

avoid storage costs) as well as achieving pipelined

parallelism (in addition to the existing partitioned

parallelism), leading to a reduction in overall task

completion time.

C. Olston,et.al,…[4] proposed a system for Building

and updating a search index from a stream of crawled

web pages. Some of the numerous steps are

deduplication, link analysis for spam and quality

classification, joining with click-based popularity

measurements, and document inversion. Processing

semi-structured data feeds, e.g. news and (micro-

)blogs. Steps include de-duplication, geographic

location resolution, and named entity recognition.

Processing along these lines is increasingly carried

out on a new generation of flexible and scalable data

management platforms, such as Pig/Hadoop. Hadoop

is a scalable, fault-tolerant system for running

individual map-reduce processing operations over

unstructured data files. Pig adds higher-level,

structured abstractions for data and processing.

Despite the success of Pig/Hadoop, it is becoming

apparent that a new, higher, layer is needed: a

workow manager that deals with a graph of

interconnected Pig Latin programs, with data passed

among them in a continuous fashion. Given that Pig

itself deals with graphs of interconnected data

processing steps, it is natural to ask why one would

layer another graph abstraction on top of Pig.

K.H. Lee, et.al,…[5] implemented The programming

model is inspired by the map and reduces primitives

found in Lisp and other functional languages. Before

developing the MapReduce framework, Google used

hundreds of separate implementations to process and

compute large datasets. Most of the computations

were relatively simple, but the input data was often

very large. Hence the computations needed to be

distributed across hundreds of computers in order to

finish calculations in a reasonable time. MapReduce

is highly efficient and scalable, and thus can be used

to process huge datasets. When the MapReduce

framework was introduced, Google completely

rewrote its web search indexing system to use the

new programming model. The indexing system

produces the data structures used by Google web

search. The parallelization doesn’t necessarily have to

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 95

be performed over many machines in a network.

There are different implementations of MapReduce

for parallelizing computing in different environments.

Phoenix is an implementation of MapReduce, which

is aimed at shared-memory, multi-core and

multiprocessor systems, i.e. single computers with

many processor cores.

data deduplication types

In this chapter, we can discuss the various data

deduplication types as follows

File-level de-duplication

It is commonly known as single-instance storage, file-

level data de-duplication compares a file that has to

be archived or backup that has already been stored by

checking all its attributes against the index. The

index is updated and stored only if the file is unique,

if not than only a pointer to the existing file that is

stored references. Only the single instance of file is

saved in the result and relevant copies are replaced

by “stub” which points to the original file.

Block-level de-duplication

Block-level data deduplication operates on the basis

of sub-file level. As the name implies, that the file is

being broken into segments blocks or chunks that

will be examined for previously stored information vs

redundancy. The popular approach to determine

redundant data is by assigning identifier to chunk of

data, by using hash algorithm for example it

generates a unique ID to that particular block. The

particular unique Id will be compared with the

central index. In case the ID is already present, then

it represents that before only the data is processed

and stored before .Due to this only a pointer

reference is saved in the location of previously stored

data. If the ID is new and does not exist, then that

block is unique. After storing the unique chunk the

unique ID is updated into the Index. There is change

in size of chunk as per the vendor. Some will have

fixed block sizes, while some others use variable

block sizes

Variable block level de-duplication

It compares varying sizes of data blocks that can

reduce the chances of collision, stated Data links in

cloud framework. The difference between

deduplication schemes are shown in fig 2.

Fig 2 : Deduplication Schemes

Secure Deduplication Algorithms

The main objective of this paper to analyze various

encryption algorithms with deduplication schemes.

The basic algorithms are shown as follows:

Traditional Encryption algorithm:

Although it is known that data deduplication gives

more benefits, security and privacy concerns arise

because the users sensitive data is susceptible to both

the outsider as well as insider attacks. So, while

considering the traditional encryption techniques to

secure the users sensitive data there are many issues

are associated. Traditional encryption provides data

confidentiality but it is not compatible with

deduplication. As in traditional encryption different

users encrypt their data with their own keys. Thus,

the identical data of the different users will lead to

different ciphertext which is making the data

deduplication almost impossible in this traditional

approach. The basic step of the algorithm as shows:

KeyGenSE: k is the key generation algorithm that

generates κ using security parameter I

EncSE (k, M): C is the symmetric encryption

algorithm that takes the secret κ and message M and

then outputs the ciphertext C;

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 96

DecSE (k, C): M is the symmetric decryption

algorithm that takes the secret κ and ciphertext C and

then outputs the original message M.

Convergent Encryption algorithm: The convergent

encryption techniques are those which provide the

data confidentiality to the users outsourced data

stored on the public clouds. These techniques while

providing the confidentiality to the data are also

compatible with the data deduplication process. In

this algorithm the encryption key is itself derived

from the message. So it supports data deduplication

also, because the same file will give the same

encryption key so it will generate the same ciphertext

irrespective of users which makes data deduplication

possible.

KeyGenCE(M) → K is the key generation algorithm

that maps a data copy M to a convergent key K;

EncCE(K,M) → C is the symmetric encryption

algorithm that takes both the convergent key K and

the data copy M as inputs and then outputs a

ciphertext C;

DecCE(K,C) → M is the decryption algorithm that

takes both the ciphertext C and the convergent key K

as inputs and then outputs the original data copy M;

and

TagGen (M) → T (M) is the tag generation algorithm

that maps the original data copy M and outputs a tag

T (M).

Block cipher algorithm:

In cryptography, a block cipher is a deterministic

algorithm operating on fixed-length groups of bits,

called blocks, with an unvarying transformation that

is specified by a symmetric key. Block ciphers operate

as important elementary components in the design of

many cryptographic protocols, and are widely used to

implement encryption of bulk data. Iterated product

ciphers carry out encryption in multiple rounds, each

of which uses a different sub key derived from the

original key. One widespread implementation of such

ciphers is notably implemented in

the DES cipher. Many other realizations of block

ciphers, such as the AES, are classified

as substitution-permutation networks. The

publication of the DES cipher was fundamental in the

public understanding of modern block cipher design.

It also influenced the academic development

of cryptanalytic attacks. Both differential and linear

cryptanalysis arose out of studies on the DES design.

There is a palette of attack techniques against which

a block cipher must be secure, in addition to being

robust against brute force attacks. Even a secure

block cipher is suitable only for the encryption of a

single block under a fixed key. A multitude of modes

of operation have been designed to allow their

repeated use in a secure way, commonly to achieve

the security goals of confidentiality and authenticity.

However, block ciphers may also feature as building-

blocks in other cryptographic protocols, such

as universal hash functions and pseudo-random

number generators.

One important type of iterated block cipher known

as a substitution-permutation network (SPN) takes a

block of the plaintext and the key as inputs, and

applies several alternating rounds consisting of

a substitution stage followed by a permutation

stage—to produce each block of cipher text

output. The non-linear substitution stage mixes the

key bits with those of the plaintext, creating

Shannon's confusion. The linear permutation stage

then dissipates redundancies, creating diffusion.

A substitution box (S-box) substitutes a small block of

input bits with another block of output bits. This

substitution must be one-to-one, to ensure

invertibility (hence decryption). A secure S-box will

have the property that changing one input bit will

change about half of the output bits on average,

exhibiting what is known as the avalanche effect—

i.e. it has the property that each output bit will

depend on every input bit.

http://www.ijsrcseit.com/
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Deterministic_algorithm
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Symmetric_key
https://en.wikipedia.org/wiki/Cryptographic_primitive
https://en.wikipedia.org/wiki/Cryptographic_protocol
https://en.wikipedia.org/wiki/Encryption
https://en.wikipedia.org/wiki/Data_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Substitution-permutation_network
https://en.wikipedia.org/wiki/Cryptanalysis
https://en.wikipedia.org/wiki/Differential_cryptanalysis
https://en.wikipedia.org/wiki/Linear_cryptanalysis
https://en.wikipedia.org/wiki/Linear_cryptanalysis
https://en.wikipedia.org/wiki/Brute_force_attack
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Confidentiality
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/Universal_hash_function
https://en.wikipedia.org/wiki/Pseudo-random_number_generator
https://en.wikipedia.org/wiki/Pseudo-random_number_generator
https://en.wikipedia.org/wiki/Substitution-permutation_network
https://en.wikipedia.org/wiki/Substitution_box
https://en.wikipedia.org/wiki/Permutation_box
https://en.wikipedia.org/wiki/Permutation_box
https://en.wikipedia.org/wiki/Confusion_(cryptography)
https://en.wikipedia.org/wiki/Diffusion_(cryptography)
https://en.wikipedia.org/wiki/Substitution_box
https://en.wikipedia.org/wiki/Bijection
https://en.wikipedia.org/wiki/Avalanche_effect

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 97

Variable chunk similarity:

It requires more processing power than the file

deduplication, since the number of identifiers that

need to be processed increases greatly.

Correspondingly, its index for tracking the individual

iterations gets also much larger. Using of variable

length blocks is even more source-intensive.

Moreover, sometimes the same hash number may be

generated for two different data fragments, which is

called hash collisions. If that happens, the system will

not save the new data as it sees that the hash number

already exists in the index. The algorithm steps as

follows.

BlockTag(FileBlock) - It computes hash of the File

block as file block Tag;

DupCheckReq(Token) - It requests the Storage Server

for Duplicate Check of the file block.

FileUploadReq(FileBlockID, FileBlock, Token) – It

uploads the File Data to the Storage Server if the file

block is Unique and updates the file block Token

stored.

FileBlock Encrypt(Fileblock) - It encrypts the file

block with Convergent Encryption, where the

convergent key is from SHA Hashing of the file block;

TokenGen(File Block, UserID) – the process loads the

associated privilege keys of the user and generate

token.

FileBlockStore(FileBlockID, FileBlock, Token) - It

stores the FileBlock on Disk and updates the Mapping.

The variable chunk similarity level deduplication is

shown in fig 3.

Fig 3 : Variable chunk similarity backup server

The mathematical model as follows:

Let S be the system object.

It consist of following S={U,F,CSP}

U= no of users U={u1,u2,u3,…..un}

F= no of files F={f1,f2,f3,…..fn}

B=no of blocks. B{B1,B2,…,Bn}

CSP={C,PF,V,POW}

C=challenge

PF =proof by CSP

V= verification by TPA

POW= proof of ownership

CSP= Cloud Service provider

CSP={PF,F} PF=proof F=files

COMPRESSION SCHEME

LZW compression is the compression of a file into a

smaller file using a table-based lookup algorithm

 Takes each input sequence of bits of a given

length and creates an entry in a table for that

particular bit pattern, consisting of the pattern

itself and a shorter code.

 As input is read, any pattern that has been read

before results in the substitution of the shorter

code, effectively compressing the total amount of

input to something smaller.

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 98

Psuedo code for variable data compression:

Step 1: User profiling: Client registration and log-in

Step 2: Client initiates file transfer (upload/download).

Step 3: File-upload: check for duplicate

Step 4: If duplicate at any of file name and file

content, create file pointer and store in CSP

Step 5: If no duplicate found, compress the file.

Step 6: File-download: Data owner to decompress and

download file.

Step 7: Server sync with client and completes file

upload/download process

Step 8: Check Login time of user after 3 days, 1 week,

2 week and 3 Weeks

Step 9: If no login means, send mobile intimation to

user

Step 10: Recover the files and forward to alternative

mail

The proposed work modules are listed as follows

FRAMEWORK CONSTRUCTION

Big data and storage solutions provide users and

enterprises with various capabilities to store and

process their data in either privately owned, or third-

party data centers that may be located far from the

user–ranging in distance from across a city to across

the world. Big data storage system relies on sharing of

resources to achieve coherence. In this framework,

we can have two types of users such as Gmail user

and Gmail server. The person or organization that

legally owns a service is called a Gmail server. The

Gmail user can be the consumer, or the user that

owns the storage within which the Gmail service

resides. Service provider provides the storage space to

the users. Storage space can be shared by multiple

data owners. Data owners can be upload the files in

storage system for future use.

FILE COMPRESSION

In this module, Data owner files are read by server.

Server can generate the dictionary to predict the

redundant data. Update the index files to eliminate

the redundant files to preserve the storage. A

particular LZW compression algorithm takes each

input sequence of bits of a given length (for example,

12 bits) and creates an entry in a table (sometimes

called a "dictionary" or "codebook") for that particular

bit pattern, consisting of the pattern itself and a

shorter code. As input is read, any pattern that has

been read before results in the substitution of the

shorter code, effectively compressing the total

amount of input to something smaller. Unlike earlier

approaches, known as LZ77 and LZ78, the LZW

algorithm does include the look-up table of codes as

part of the compressed file. The decoding program

that uncompresses the file is able to build the table

itself by using the algorithm as it processes the

encoded input.

FILE ENCRYPTION:

Encryption is the most effective way to achieve

data security. To read an encrypted file, you must

have access to a secret key or password that enables

you to decrypt it. Unencrypted data is called plain

text ; encrypted data is referred to as cipher text.

There are two main types of encryption: asymmetric

encryption (also called public-key encryption)

and symmetric encryption. We can implement

symmetric encryption for encrypt the data files using

single key approach. Symmetric key algorithms are

algorithms for cryptography that use the

same cryptographic keys for both encryption

of plaintext and decryption of cipher text. The keys

may be identical or there may be a simple

transformation to go between the two keys. The keys,

in practice, represent a shared secret between two or

more parties that can be used to maintain a private

information link. Encrypted data can be stored in

cloud server.

SIMILARITY CHECKING

In computing, data deduplication is a specialized data

compression technique for eliminating duplicate

copies of repeating data. Related and somewhat

http://www.ijsrcseit.com/
http://www.webopedia.com/TERM/S/security.html
http://www.webopedia.com/TERM/R/read.html
http://www.webopedia.com/TERM/F/file.html
http://www.webopedia.com/TERM/K/key.html
http://www.webopedia.com/TERM/P/password.html
http://www.webopedia.com/TERM/D/decryption.html
http://www.webopedia.com/TERM/P/plain_text.html
http://www.webopedia.com/TERM/P/plain_text.html
http://www.webopedia.com/TERM/C/cipher_text.html
http://www.webopedia.com/TERM/P/public_key_cryptography.html
http://www.webopedia.com/TERM/S/symmetric_encryption.html

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 99

synonymous terms are intelligent (data)

compression and single-instance (data) storage. This

technique is used to improve storage utilization and

can also be applied to network data transfers to

reduce the number of bytes that must be sent. In the

compression process, unique chunks of data, or byte

patterns, are identified and stored during a process of

analysis. As the analysis continues, other chunks are

compared to the stored copy and whenever a match

occurs, the redundant chunk is replaced with a small

reference that points to the stored chunk. In this

module, we can check the files using file name with

file contents. The uploaded files are spilted into

chunks. Service provider checks the chunks at the

time of uploading files. Data owner only upload

original file so save storage space in cloud system. We

can compression in text file, document file and image

files and video files

ALERT SYSTEM

In this system, we can design application for alert

system for every week. After four weeks completed,

if there is no access means the files are automatically

sent to alternate mail and mobile which are stored at

the time of registration. Server can save huge amount

of storage and provide to other users.

BACKUP RECOVERY APPROACH

Admin can check access time for each user login. If

user login to the system means, activity is registered

in storage. And also monitor each user access. If the

user access is paused more than 3 days means, admin

automatically send alert to user based on registered

mobile numbers. Finally if there is no access in

storage system means, backup is generated. And flush

the storage space and save storage for server for

future use.

III. CONCLUSION

We proposed the distributed compression systems to

improve the reliability of data while achieving the

confidentiality of the users and also shared authority

outsourced data with an encryption mechanism. Four

constructions were proposed to support file-level and

block-level data compression. The security of tag

consistency and integrity were achieved. We

implemented our compression systems using the

secret sharing scheme and demonstrated that it

incurs small encoding/decoding overhead compared

to the network transmission overhead in regular

upload/download operations. In this work, we have

identified a new privacy challenge during data

accessing in the cloud computing to achieve privacy-

preserving access authority sharing for similarity files.

Authentication is established to guarantee data

confidentiality and data integrity. Data anonymity is

achieved since the wrapped values are exchanged

during transmission. User privacy is enhanced by

access requests to privately inform the cloud server

about the users access desires. The backup recovery

scheme is to improve the recovered scheme to avoid

the blockages and also refund the amount to unused

spaces in cloud system.

IV. REFERENCES

[1]. L. Wang, J. Zhan, W. Shi and Y. Liang, “In

cloud, can scientific communities benefit from

the economies of scale?” IEEE Transactions on

Parallel and Distributed Systems 23(2): 296-

303, 2012.

[2]. B. Li, E. Mazur, Y. Diao, A. McGregor and P.

Shenoy, “A platform for scalable one-pass

analytics using mapreduce,” in: Proceedings of

the ACM SIGMOD International Conference

on Management of Data (SIGMOD'11), 2011,

pp. 985-996.

[3]. R. Kienzler, R. Bruggmann, A. Ranganathan

and N. Tatbul, “Stream as you go: The case for

incremental data access and processing in the

cloud,” IEEE ICDE International Workshop on

Data Management in the Cloud (DMC'12), 2012

http://www.ijsrcseit.com/

Volume 5, Issue 3, May-June -2019 | http://ijsrcseit.com

Ramya. S, Gokula Krishnan. V Int J Sci Res CSE & IT. May-June-2019 ; 5(2) : 92-100

 100

[4]. C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han,

M. Larsson, A. Neumann, V.B.N. Rao, V.

Sankarasubramanian, S. Seth, C. Tian, T.

ZiCornell and X. Wang, “Nova: Continuous

pig/hadoop workflows,” Proceedings of the

ACM SIGMOD International Conference on

Management of Data (SIGMOD'11), pp. 1081-

1090, 2011.

[5]. K.H. Lee, Y.J. Lee, H. Choi, Y.D. Chung and B.

Moon, “Parallel data processing with

mapreduce: A survey,” ACM SIGMOD Record

40(4): 11-20, 2012.

[6]. X. Zhang, C. Liu, S. Nepal and J. Chen, “An

Efficient Quasiidentifier Index based Approach

for Privacy Preservation over Incremental Data

Sets on Cloud,” Journal of Computer and

System Sciences (JCSS), 79(5): 542-555, 2013.

[7]. X. Zhang, T. Yang, C. Liu and J. Chen, “A

Scalable Two-Phase Top-Down Specialization

Approach for Data Anonymization using

Systems, in MapReduce on Cloud,” IEEE

Transactions on Parallel and Distributed, 25(2):

363-373, 2014.

[8]. N. Laptev, K. Zeng and C. Zaniolo, “Very fast

estimation for result and accuracy of big data

analytics: The EARL system,” Proceedings of

the 29th IEEE International Conference on

Data Engineering (ICDE), pp. 1296-1299, 2013.

[9]. T. Condie, P. Mineiro, N. Polyzotis and M.

Weimer, “Machine learning on Big Data,”

Proceedings of the 29th IEEE International

Conference on Data Engineering (ICDE), pp.

1242-1244, 2013.

[10]. Aboulnaga and S. Babu, “Workload

management for Big Data analytics,”

Proceedings of the 29th IEEE International

Conference on Data Engineering (ICDE), pp.

1249, 2013

Cite this article as :

Ramya. S, Gokula Krishnan. V, "Storage Preservation

Using Big Data Based Intelligent Compression

Scheme", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume

5 Issue 3, pp. 92-100, May-June 2019. Available at

doi : https://doi.org/10.32628/CSEIT19539

Journal URL : http://ijsrcseit.com/CSEIT19539

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT19539
http://ijsrcseit.com/CSEIT19539

