
 CSEIT195425 | Received : 10 July 2019 | Accepted : 02 August 2019 | July-August -2019 [5 (4) : 167-175]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 4 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT195425

167

How to Ensure Testing Robustness in Microservice Architectures and Cope

with Test Smells
Mesut Durukal

IOT DS EU TR PLT, Siemens AS, Istanbul, Turkey

ABSTRACT

This paper presents the most common test smells and prevention methods against them in test automation

frameworks which are used to test microservice architectures. In this scope; the necessity for test automation is

discussed, and the most probable test smells in a test automation framework are listed. Finally, applied solutions

to handle them are told and advantages are analyzed by investigating the results.

Keywords : Cloud Services, API Testing, Test Automation; Robustness; Test Smells; Asynchronous

Microservices.

I. INTRODUCTION

Ignorance of testing in projects may cause major costs

in later phases of the product lifecycle. To illustrate

the prominence of testing, Richard Warburton states

that it costs $25 million just to plan out how to fix the

leaning tower of Pisa, which was in danger of falling

over [1]. In addition, testing activities should be

applied in all levels. For the products, in which

multiple modules are integrated, each unit or

subsystem is tested individually. Besides; the

integrated product should be still verified which

indicates the necessity of E2E testing. The quality of

the product is fully ensured by testing in all levels.

Figure 1. Leaning Tower of Pisa.

As far as the importance of testing is accepted, next

concern would possibly be the testing approach. At

this point, necessity for test automation can be

considered from different angles.

Even though the demands are growing in projects

since more requirements and features are added day

by day; timelines tend to get shorter and increases

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT195425

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 168

the pressure on every stakeholder. Each activity

should be managed more efficiently in terms of time

and effort for this reason. Additionally; in continuous

integration and delivery environments, new bugs

possibly arise with each deployment; which requires

continuous testing.

Shortly, it can be concluded that continuous testing

activities would be much more difficult without test

automation. To reduce manual effort and testing

duration, tests are automated and scheduled

executions are planned and triggered automatically

over pipelines.

Test automation is obviously needed, but it is not

trivial and has several challenges. Inconsistent results

are the most encountered difficulties especially in

asynchronous services. Therefore, robustness is very

crucial for testers, since the analysis of the results

consumes a huge effort. These kinds of complications

result in test smells. Proposed solutions provide an

insight to cope with test smells and ensure robustness.

In this way, quality is ensured in terms of scope, time

and cost.

In this paper, the most common test smell types are

introduced, and solutions are proposed. Section II

describes the test smells. Section III explains the

solutions, where the results are discussed in Section

IV. Finally, summary of the work is addressed in

Section V. Acknowledgement and references close

the article.

II. DEFINITIONS: TEST SMELLS

Test smells are regarded as indicators for potential

problems [5] and observed during testing cycles. In

other words, test smells are defined as poorly

designed tests [6].

A. Consequences

Test smells can be roughly divided into two groups.

When a test does not catch a failure due to a reason,

this is the Silent Horror region [7]. On the other

hand; the situation, where a test fails even if the

feature under test is developed as expected, indicates

a false alarm.

TABLE I. TEST RESULTS CLASSIFICATION

To illustrate how crucial test smells are, August 2005

crash of Helios Airways Flight 522 can be

investigated. It is the most fatal flight accident to date,

in which 121 passengers and crew were killed when a

Boeing 737-31S crashed into a mountain north of

Athens [8]. Afterwards, it was concluded that due to

lots of false alarms, real cockpit pressure failure

alarms were neglected by pilots.

B. Impacts

The quality of the test suites is of crucial significance

since it is directly related to quality of the product

itself. Strengths and weaknesses of the product are

observed by tests. If a weakness of the product is

overlooked, cost for fixing a bug after it is released,

considerably increases.

Figure 2. Cost of a bug by lifecycle stages [4].

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 169

Furthermore; the maintenance effort and time

needed to complete testing, are affected by the

quality of test suites.

C. Role of Microservices for Test Smells

Microservices is an approach which makes use of a

granular structure in which services collaborate and

build the whole product.

Microservices approach is being chosen recently for

several reasons [2]:

✓ to reduce complexity by dividing the huge

product into tiny pieces,

✓ to scale, remove and deploy independent parts of

the system easily and independently,

✓ to improve flexibility to use different frameworks

and tools,

✓ to increase the overall scalability,

✓ to improve the resilience of the system.

Despite all the advantages of microservices; there are

drawbacks as well, especially for asynchronous

systems.

Figure 3. A sample representation of microservices

[3].

In asynchronous systems, user requests are responded

by the relevant unit without waiting for the response

of the successive units. For each request, a transaction

is created, which leads additional requests to other

microservices. Even if the first steps of the

transaction succeed, a failure in the following steps is

possible. Moreover; the process time depends on the

number of the successive microservices.

Unpredictable failures in any node and unknown

processing time are possible causes for test smells in

such architectures.

D. Test Smell Types

Test smells can be classified in a categorical structure.

TABLE II. CATEGORICAL TEST SMELLS

1) Stability and Reliability Related Smells: Tests once

pass and once fail under same conditions are instable

tests. Those can be listed as:

a) Flaky Test: Flaky tests sometimes pass and

sometimes fail without any change in the system [9].

Google statistics [10] provide a clue to guess how

much trouble flaky tests introduce to projects:

✓ 1.5% of all test runs report a "flaky" result.

✓ Almost 16% of the tests have some level of

flakiness associated with them!

✓ 84% of the transitions observed from pass to fail

involve a flaky test!

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 170

b) Suite Dependency

✓ Test Run Wars arise when tests pass

independently but fail when more testers run

them simultaneously.

✓ Chain Gang situation arises when tests are

executed in a wrong order.

c) Fragile Test: Failure of a test with a parameter

change addresses a fragile test. For instance, test

failure with a test data change implies a data sensitive

test.

2) Distortive Smells: Distortive smells hide the real

results and lead to false alarms or silent horrors.

a) Distortive Smells stemming from assertions:

Assertions which are used to check the expected

conditions influence the quality of the tests. A test

with no assertion or obsolete and inappropriate

assertions provoke test smells. Moreover, “Under-

the-carpet failing Assertion” [9] which results in tests

that can never fail, and “Ugly Mirror” [9] which

causes silence horrors are other test smell types. For

Ugly Mirror case, consider “multiply” method is

tested. “assertEquals (multiply(2,4), 2*4, "Error

message: Result is not correct.");” code involves a

smell since expected result is identified with an

expression which is already in product code. Instead

of “2*4”, “8” is supposed to be the expected result

since it is known that:

2x4=8 [1]

b) Distortive Smells stemming from mocks: Especially

in microservices structures, mocking is a commonly

used approach for unit tests. In this sense, the correct

behavior of the mock is critical, since any other case

may lead to hidden bugs. Furthermore, mocking

everything results in hidden integration bugs.

3) Scope Related Smells: Smells, which are based on

the scope, can be grouped under Scope Related

Smells:

a) Eager Test is mainly described in literature as a test

which tries to verify lots of features of the same

object in a single case. Eager tests cause various

drawbacks since granularity and traceability are lost,

and understandability of tests reduces. A similar case

is “Free Ride (Piggyback) [9]” which is the extension

of an existing test case.

b) Limited Scope: Testing the functionality in a

limited scope, especially the positive paths, hides the

bugs lying under negative paths. For the users of the

system, negative paths are as important as the

positive paths since users are warned by error

messages in wrong usages. A negative impression

about the product arises in a crash scenario.

Another risky situation is about the security related

scenarios. For authentication and authorization

functionalities, the positive scenarios tests whether

the defined users can login to system. However, the

negative scenarios are probably more important for

the prevention of malicious attacks.

Finally; in terms of scope, test data holds a great

importance for the coverage. Testers are suggested to

use clever and random numbers instead of magic

numbers.

c) Test scope overlap: Scope overlap occurs when

several test methods check the same method using

the same fixture. This phenomenon is also called as

Lazy Test [9].

4) Performance Related Smells: Slow or long running

tests are classified under performance related smells.

5) Structural Smells: Smells stemming from the test

code structure are categorized under structural

smells.

a) Duplicated test codes (Second Class Citizens [9])

Duplicated test codes increase the effort and time to

maintain test codes.

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 171

Figure 4. Matryoshka dolls representing code

duplications.

b) Long tests: Long tests are hard to read and analyze.

c) Obscure test: Also known Mystery Guest [9]: Tests

using external resources, such as a data or config file,

are not self-contained tests. Consequently, there is

not enough information to understand the tested

functionality.

d) Dead Fields: Dead fields are the codes which are

not used by any other method.

e) Bad naming: Ideally, name of a variable, function

or class answers all the big questions. It tells why it

exists, what it does and how it is used. If a comment

is required to describe it, then it means the name is

not clear enough.

f) Vague Header Setup stems from fields which are

initialized in the header of a class, but not in implicit

setup.

g) Exception Handling: “The Silent Catcher” [9]: The

silent catcher phenomenon is a kind of Silent Horror

in which Unexpected Exceptions are caught.

h) Structural Assertion Smells:

✓ Asserting an obvious subject

✓ Assertion roulette: This smell comes from having

several assertions in a test method that have no

explanation. If one of the assertions fails, you do

not know which one it is.

III. SOLUTIONS AND RESULTS

Just like being aware of test smells and detecting

them, improving test designs and test smell solutions

are as important as them. In this section, applied

solutions are told.

A. System Under Test

For this work; test smells are observed, and the

solutions are applied on a cloud-based open IoT

operating system. Testing activities are performed

from unit level to E2E level. The product has been

developed by more than 600 people in 10 countries.

A new version is released every two weeks.

Acceptance tests are performed for each release and

regression tests are performed after every

deployment, which is approximately every 4 hours.

B. Polling Mechanisms

As described in Microservices section, methods that

does not wait for the result of call properly are the

most probable causes of flaky results. A research [11]

supports this claim:

Figure 5. Distribution of flaky results across different

categories.

As suggested in [10] as well, instead of reporting a

test as fail according to a single result, in this

approach at least three executions are checked to

decide about the result. For this aim, adaptive retry

algorithms are integrated into test codes.

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 172

A deletion scenario can be investigated to figure out

this situation better. In this scenario, “myservice”

responds requests coming from end-user and

communicates to entity service to save and delete

objects. After a creation request, the call is responded,

and the operation is queued. However; if the object is

tried to be deleted before creation finishes, request is

refused since the object cannot be found. This does

not mean the feature fails, since deletion works when

the object exists. A retry, performing the request 3

times is:

Figure 6. Successful response after 3rd request.

Figure 7. Test results before and after applying retry

mechanisms.

In addition, polling mechanisms replace static waits.

For instance, when an operation is expected to be

fulfilled in 2 minutes, even though waiting until 2

minutes is accepted, polling for the result with a

frequency prevents longer waits.

C. Helper Classes

Most of the test steps are repeated in several test

scenarios. This results in a necessity to apply a fix on

several points when an update is needed in one step.

Due to these duplications, variations between

different test classes exist in the test framework.

Additionally, as test automation framework evolves,

and number of tests increases, it becomes harder to

update the existing code.

Regarding to the size of the project, it becomes

inevitable to implement and use helper classes after a

certain point. Instead of using duplicated codes;

several test classes call helper methods. Eventually

implementing and using helper classes at the

beginning provides us more extendable and easily

maintainable automation code.

Finally, helpers improve understandability of the

codes.

Test results before and after applying retry

mechanisms:

Figure 8. Change in understandability of the code

with Helper Classes.

D. Clean Up

Cleaning the created objects after each test execution

is of great prominence since they result in conflicts in

next executions. Thanks to integrated clean ups in

the automation framework, conflicts are not

hindered only, but the load on testing environments

are reduced also. Through clean ups, flaky results and

test run wars are depressed.

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 173

E. Test Suites Generation and Grouping with

Annotations

Tests are labelled with annotations to group similar

scenarios which can be executed together. Thus, the

whole suite is divided into subsets and by parallel

executions the regression testing durations are

reduced. On the other hand, tests blocking each

other can be managed in this way to handle with Test

Run Wars. A sample annotation is:

@Test(groups = { TestGroups.ENTITY,

TestGroups.DELETE, TestGroups.UI }, enabled =

true)

F. Tools Usage

Code quality tools detect smells and advice for the

solutions. SonarQube is used in this project to scan

test codes and improve quality. Lots of vulnerabilities

such as fragile and long tests, duplicated codes and

structural smells such as magic numbers are revealed

and fixed with these scans.

Figure 9. Warnings of SonarQube.

G. Test History

Against instabilities, scheduled jobs are created over

pipelines to execute tests multiple times to observe

sporadic issues. After each execution, results are

automatically reported and at the end, instabilities

are filtered out.

Figure 10. Test Result Trend across executions

H. Additional Executions

Apart from regression suites and functionality checks,

some additional exploratory and compatibility testing

are performed to increase test coverage.

Figure 11. Distribution of found bugs over one

service.

Some other smells, like Testing Happy Path Only,

can be reduced with Exploratory testing. In a sprint,

distribution of found bugs over one service is

illustrated in Figure 11.

As long as the UI functions are verified on a single

browser, some bugs arising on other browsers can be

missed. To eliminate these risks, cross browser testing

is integrated into testing processes.

İ. Test Data Generation

As test data, instead of using static numbers, test data

in a wide range, covering different usages and corner

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 174

cases is generated. In this way, scope insufficiencies

are resolved.

J. Reviews

1) Test Definition Review: After test definitions are

completed, definitions are reviewed by others. In this

way, on one hand, coverage concerns are fulfilled.

On the other hand; by test definition reviews, Eager

tests are rearranged.

2) Test Code Review: Several testers are involved in

review processes and test codes are improved as

much as possible. According to a list of code review

standards, test code is reviewed in many aspects by

different people, thus the risks are minimized, and

quality is enhanced.

a) Cross check: Review of the test design by a second

eye reveals smells since a fresh look provides an extra

point of view. Fragile codes, false alarm and silent

horror cases, scope overlaps, structural smells are

treated in this way.

b) Best practices: Removing unnecessary code blocks

is observed to be one of the most fundamental factors

which slow test executions. A login operation, which

is performed over UI is a relatively slow operation

and unless it is needed, it contributes with more

execution time. Similarly using final modifiers and

some other parametric usages affects the memory

usage and execution performance. This kind of smells

can be get rid of with code reviews.

c) Naming Conventions: Naming conventions are set

to prevent bad naming and obscure tests.

IV. CONCLUSION AND FUTURE WORK

In this paper, firstly the necessity for testing and test

automation is discussed. Secondly; the structure of

the microservices and how much it gives rise to test

smells are described. After a categorical test smell

types definition is made, preventive actions against

them are told.

TABLE III. PROPOSED ACTIONS AGAINST TEST

SMELLS

V. CONCLUSION

One more time to emphasize the importance of the

improvements in testing and reduction of test smells,

it would be influential to state the annual cost of

manual maintenance and evolution of test scripts in

Accenture, which was estimated to be between $50-

$120 million [12]. Eliminating test smells saves a lot

in terms of maintenance costs and time pressure.

Suggested approaches can be adapted by any

organization with a customization according to the

related work to achieve time and cost reduction.

As a future work, statistical data is planned to be

collected over test execution results. Especially for

flaky conditions, success/fail ratio and execution

duration statistics are supposed to be used for further

improvements. Moreover; integration of the collected

statistical data to artificial intelligence applications on

automation framework, is on future agenda.

VI. ACKNOWLEDGMENT

My manager, Mr. Kamil Yıldırgan has always

supported and encouraged me to prepare this paper.

Besides, Ms. Elif Yilal has reviewed the paper and

guided me for the improvements. Additionally; Ms.

Eylul Akar and Ms. Buse Ozarslan have always

helped me and worked closely with me on this

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 167-175

 175

project. Finally, I am very grateful to all my team

mates with whom I worked together on test

automation framework for their precious help. The

work in this respect has been enthusiastic. Thank

you, dear colleagues.

VII. REFERENCES

[1]. R. Warburton, "Introduction to Testing in

Java," Pluralsight.

[2]. M. Amaral, J. Polo, D. Carrera, I. Mohomed, M.

Unuvar and M. Steinder, "Performance

Evaluation of Microservices Architectures

Using Containers," 2015 IEEE 14th

International Symposium on Network

Computing and Applications, Cambridge, MA,

2015, pp. 27-34, doi: 10.1109/NCA.2015.49.

[3]. Microservice Monitoring. OnlineAvailable

from:

https://www.appdynamics.com/solutions/micro

services/ 2019.07.10

[4]. What is the cost of a bug? OnlineAvailable

from:

https://azevedorafaela.com/2018/04/27/what-is-

the-cost-of-a-bug/ 2019.07.11

[5]. G. Bavota, A. Qusef, R. Oliveto, et al. "Are test

smells really harmful? An empirical study,"

Empirical Software Engineering, 2015, 20: pp.

1052-1094, doi: 10.1007/s10664-014-9313-0.

[6]. G. Bavota, A. Qusef, R. Oliveto, A. De Lucia

and D. Binkley, "An empirical analysis of the

distribution of unit test smells and their impact

on software maintenance," 2012 28th IEEE

International Conference on Software

Maintenance (ICSM), Trento, 2012, pp. 56-65,

doi: 10.1109/ICSM.2012.6405253.

[7]. A. Vahabzadeh, A. M. Fard and A. Mesbah, "An

empirical study of bugs in test code," 2015 IEEE

International Conference on Software

Maintenance and Evolution (ICSME), Bremen,

2015, pp. 101-110, doi:

10.1109/ICSM.2015.7332456

[8]. Analysis shows pilots often ignore Boeing 737

cockpit alarm OnlineAvailable from:

https://www.travelweekly.com/Travel-

News/Airline-News/Analysis-shows-pilots-

often-ignore-Boeing-737-cockpit-alarm/

2019.07.10

[9]. V. Garousi, B. Küçük, Barış, "Smells in software

test code: A survey of knowledge in industry

and academia." Journal of Systems and

Software, 2018, 138, pp. 52-81, doi:

10.1016/j.jss.2017.12.013.

[10]. Flaky Tests at Google and How We Mitigate

Them. OnlineAvailable from:

https://testing.googleblog.com/2016/05/flaky-

tests-at-google-and-how-we.html/ 2019.07.10

[11]. F. Palomba and A. Zaidman, "Does Refactoring

of Test Smells Induce Fixing Flaky Tests?," 2017

IEEE International Conference on Software

Maintenance and Evolution (ICSME),

Shanghai, 2017, pp. 1-12. doi:

10.1109/ICSME.2017.12

[12]. M. Grechanik, Q. Xie, and C. Fu, ʺMaintaining

and evolving GUI-directed test scripts,ʺ

Proceedings of the 31st International

Conference on Software Engineering, 2009, pp.

408-418.

Cite this article as :

Mesut Durukal, "How to Ensure Testing Robustness

in Microservice Architectures and Cope with Test

Smells", International Journal of Scientific Research

in Computer Science, Engineering and Information

Technology (IJSRCSEIT), ISSN : 2456-3307, Volume

5 Issue 4, pp. 167-175, July-August 2019. Available at

doi : https://doi.org/10.32628/CSEIT195425

Journal URL : http://ijsrcseit.com/CSEIT195425

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT195425
http://ijsrcseit.com/CSEIT195425

