
CSEIT195333 | Received : 01 July 2019 | Accepted : 02 August 2019 | July-August -2019 [ 5 (4) : 198-205 ] 

International Journal of Scientific Research in Computer Science, Engineering and Information Technology 

© 2019 IJSRCSEIT | Volume 5 | Issue 4 | ISSN : 2456-3307 

DOI : https://doi.org/10.32628/CSEIT195434 

 
198 

 

Practical Applications of Artificial Intelligence in Software Testing 

Mesut Durukal 

IOT DS EU TR PLT, Siemens AS, Istanbul, Turkey 

mesut.durukal@siemens.com 

ABSTRACT 

 

This paper presents the use of artificial intelligence in each software testing stage. In this context, the necessity 

to use AI (artificial intelligence) in software testing with its effects and outcomes is discussed. Then, practical 

applications and the advantages are analyzed.  The main goal is to make insights about what can be done in 

different stages of software testing by means of AI. 
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I. INTRODUCTION 

 

Software applications today have very comprehensive 

features and use cases. Most of them interact with 

other applications through APIs and connect to 

various platforms, which results in a remarkably wide 

scope and complexity.  

 

Another fundamental aspect of testing is time, in 

addition to scope. When highly dynamic software 

lifecycles with continuous integration and 

deployment activities are considered, the need to react 

quickly against frequent changes can easily be 

understood.  

Figure 1. Delivery time versus complexity of products 

[1]. 

Products should have competitive features to survive 

in modern world. On one hand, they should adapt new 

functionalities and be compatible to new technologies. 

On the other hand, they should respond to rapid 

changes not to be old fashioned and be one of the first 

in the market.  

 

The challenges in product development have some 

reflections in software testing. Necessity to take quick 

actions against gaps introduced by complexity and fast 

changes in testing cycles is unneglectable. In this 

manner; every possible solution to overcome raising 

challenges is tried to be applied on testing. Probably; 

at this point, one of the most exciting candidates is the 

introduction of machine-based intelligence into 

testing [2]. AI practices promise for save on time and 

additional coverage. 

 

Mainly; faster, better, and cheaper solutions are the 

most promising expectations [4] from usage of AI in 

testing. Apart from these expectations, testing 

activities are supposed to be more empirical instead of 

deterministic situations. The nature of machine 

learning supports this idea since machine models are 

continuously improved with observations. 
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Figure 2. Test coverage gap [3]. 

 

To illustrate how big a game changer AI is supposed to 

be; only the investments, which is estimated as $15.7 

trillion in 2030 [5], would be sufficient. Another 

survey [6] foresees the budgets for AI projects by 2025 

as $90BN. 

Figure 3.  AI Projected Revenue in $ Billion [6]. 

In this paper, possible AI practices on software testing 

stages are investigated. Section II describes artificial 

intelligence working principles. Section III explains 

several applications, where the outcomes are analyzed 

in Section IV. Finally, summary of the work is 

addressed in Section V. The acknowledgement and 

references close the article. 

 

II. METHODS AND MATERIAL 

 

To reduce manual effort, several automation processes 

are integrated into projects. However, human testers 

are still needed for these activities [7]: 

 

 

• defining testing goals,  

• acquiring the knowledge needed to test the system, 

• designing and specifying detailed test scenarios, 

• writing the test automation scripts, 

• executing scenarios that could not be automated, 

• analyzing the results to determine threads. 

 

The difference between machines and human should 

be clarified first to get rid of human effort. Machines 

are mainly programmed to follow explicit instructions, 

where humans learn a lot through observation and 

experience. In this point, machine learning (ML) is the 

key factor for reducing this gap as much as possible.  

 

Although machine learning is regarded as a 

subdiscipline of AI, most of the time they have been 

used for each other. Machine learning is defined by 

Arthur Samuel in 1959 as “the subfield of computer 

science that gives computers the ability to learn 

without being explicitly programmed” just like human 

beings. If the performance of machine improves with 

experiences, it means that it is learning [7]. 

 

Machine learning algorithms run in two stages: 

Training and execution. First, machine learns the 

system; or in other words, it models the system, which 

is called as training. Then the execution is performed, 

where machine predicts next steps according to learnt 

experiences. ML types can be classified as Supervised, 

Unsupervised, Semi-Supervised and Reinforcement 

Learning. 

 

A. Supervised Learning 

Supervised machine learning algorithms apply what 

has been learned in the past to new data. They use 

labeled examples to learn and predict future events. 

Starting from the analysis of a known training dataset, 

the algorithm builds a model to make predictions 

about the output values. System provides targets for 

any new input after sufficient training.  
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Figure 4.  Use of labeling in supervised and semi-

supervised learning [8]. 

B. Unsupervised Learning 

Unsupervised ML algorithms are used when the 

information used to train is neither classified nor 

labeled. Under these conditions, system builds a model 

to describe a hidden structure from unlabeled data. 

The system is not expected to estimate the right output, 

but it explores the data, draws outcomes from datasets 

and finally describes hidden structures from unlabeled 

data. 

C. Semi-supervised Learning 

Semi-supervised ML algorithms fall somewhere in 

between supervised and unsupervised learning, since 

they use both labeled and unlabeled data for training 

– typically a small amount of labeled data and a large 

amount of unlabeled data.  

D. Reinforcement Learning 

Reinforcement ML algorithm is a learning method 

that interacts with its environment by producing 

actions and discovers errors or rewards. Trial and error 

search and reward are the most relevant 

characteristics of reinforcement learning. Simple 

reward feedback is required for the machine to learn 

which action is best; which is known as the 

reinforcement signal.  

 

 
Figure 5.   Reinforcement Learning [9]. 

 

Lots of applications for supervised (classification, 

regression, anomaly detection), unsupervised 

(clustering, association, dimension reduction) or 

reinforcement learning algorithms are developed in 

various models like Neural Networks, Support Vector 

Machines, Principal Component Analysis, k Means, k 

Nearest Neighbors.   

 

III. APPLICATIONS 

 

AI is utilized in different stages of testing. In this 

section, all application methodologies are investigated 

in detail. 

 

 

Figure 6.  Software Testing Stages. 

E. Test Definition 

To ensure product quality, test scenarios are defined 

and executed to cover use cases. AI improves quality 

and reduces manual effort in test definition stage in 

different ways. 

 

Model-Based Test Generation: In this model, machine 

learns the use cases in the system by observing actions 

and reactions. In this way, the mandatory parameters 

and expected inputs are learnt. Similarly, error 
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messages in negative scenarios are observed. At the 

end of the learning phase, test cases are generated to 

verify expected results and behaviors. An example for 

model-based AI-driven test generation platform called 

AIST [7], which explores user scenarios to generate 

test cases. 

 

Test Generation from UML Diagrams: A test 

generation alternative is analyzing UML diagrams.  

 

Figure 7.  A basic activity diagram [10]. 

As proposed in a research [10], test cases are generated 

by covering all the transitions in an activity diagram. 

In the study, 10 test cases are generated according to 

the diagram.  

TABLE I.  TEST SCENARIOS GENERATED FROM ACTIVITY 

DIAGRAM 

Number Scenario 

1 B4 -> B1 -> B2 -> B3 -> B5 

2 B4 -> B1 -> B2 -> B5 -> B3 

3 B4 -> B1 -> B5 -> B2 -> B3 

4 B4 -> B5 -> B1 -> B2 -> B3 

5 B1 -> B4 -> B2 -> B5 -> B3 

6 B1 -> B4 -> B2 -> B3 -> B5 

7 B1 -> B4 -> B5 -> B2 -> B3 

8 B1 -> B2 -> B3 -> B4 -> B5 

9 B1 -> B2 -> B4 -> B3 -> B5 

10 B1 -> B2 -> B4 -> B5 -> B3 

F. Implementation 

In continuous testing environments, no one would 

refuse an increase in test implementation speed.  

 

Code Generation: For robots a way to write codes is, 

first understanding the problem and then applying the 

solution. When the problem is defined with inputs 

and outputs, then needed operations are predicted ad 

related codes are generated. 

 

Consider how DeepCoder [11] does it: If you want to 

filter numbers smaller than 0, and list them after 

multiplying with 4 in a reserve sorted order, here is an 

example IO:  

 

 

Figure 8.  Input and outputs of the problem [11]. 

After checking inputs and outputs, according to learnt 

patterns, DeepCoder predicts needed operations:  

 

Figure 9.  Predicted operations [11]. 

Auto-Completion: After most used patterns are learnt, 

subsequent codes are proposed during implementation. 

Tabnine [12] is an example application which 

facilitates test implementation.  

 
Figure 10.  An auto-completion application: Tabnine. 

G. Execution 
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Exploratory Testing: After new feature deployments, 

AI bots click every new button added to the 

application to test new functionalities. Additionally, 

changes on UI are detected and images removed from 

the application are noticed. Consequently, machine 

starts to learn about the application and understand 

relations between the modules. Finally, test cases are 

generated according to these relations. 

 

Usability and Efficiency Tests: Adam Carmi, co-

founder and CTO of Applitools [13], states: “We want 

to make sure that the UI itself looks right to the user 

and that each UI element appears in the right color, 

shape, position, and size.” ML algorithms are used in 

their tool Applitools to perform usability and 

efficiency tests. 

 

The system is modeled by the machine according to 

use cases. Parameters for difficult and easy paths are 

extracted, and new designs are oriented by these 

trainings.  

 

Execution Analysis: During test executions, AI 

algorithms learn patterns and user tendencies by 

collecting data, taking screenshots, downloading the 

content of web pages and measuring loading times. 

Then, properties of new features are estimated, and 

the deviations are detected. For instance, if loading 

time of a new page is longer than predicted, a warning 

is raised. Some outlier detection algorithms are applied 

with Info Fuzzy Network [14]. 

H. Maintanence and Grouping 

Refactoring: According to learnt patterns, some 

applications like DeepCode [15] proposes solutions 

against code smells.  

 

Self-Healing: For UI test automation, unusable and 

broken locators are the most challenging problems. 

When locators change, tests fail since the codes do not 

identify the expected module any more. Self-healing 

algorithms are developed to get rid of this challenge. 

AnyUI Engine [16] proposes that codes can be 

refactored by recognizing most stable properties. In 

this way, codes related to changing parameters are 

refactored by referring stable ones.  

 

Prioritization: Infinite testing is impossible. In a 

limited testing time, the most prior test cases should 

be selected and executed. Priority is decided according 

to [17]: 

 

• The probability to find an error, 

• Uniqueness in terms of scope, 

• Complexity or simplicity, 

• Fitness for the regression activity. 

 

Figure 11.  Test prioritization and reduction with 

ANN [4]. 

Therefore; for prioritization, test cases are evaluated 

according to learnings which are collected from the 

labelled training sets. Test prioritization is developed 

with various approaches such as ANN [4] and Genetic 

algorithms [18].  

 

Suite Generation: After a change, at least the 

regression suite is executed. ML algorithms train the 

relations between test cases and the features; and 

decide related test suite for a feature.  

 

It is possible to construct a group of similar tests by 

observing the coverages of tests during their 

executions [19]:  

Branch Coverage: According to hits to a branch; 

algorithm calculates the distances of executions to the 
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target branch and relation between a test and a branch 

is estimated. 

 

Line Coverage: Distances are calculated with covered 

lines in the code excluding the comments.  

 

Exception Coverage: Exception coverage is a kind of 

reinforcement learning and aims as much exceptions 

as possible. Tests which throw more exceptions are 

rewarded.  

 

Method Coverage: Method coverage approach applies 

the same algorithms over methods. Tests are evaluated 

according to whether they call methods or not. 

 

I. Bug Handling 

Classification: Bug classification provides hints about 

the weaknesses of the product. For example, if bugs 

mostly heap together on a feature, some actions can be 

taken accordingly.  In this case, related tests are 

prioritized to investigate the feature deeper.  

 

Addressing: For big teams, it is not easy to know every 

assignee for all features. In such cases, the address can 

be proposed by the machine according to previously 

addressed bugs. Correctly assigned bugs are labeled 

and the system is trained by the machine. Then 

addresses for next bugs are estimated. 

 

Scoring: Scoring of the bugs are very important since 

they are handled according to their severities. First 

bugs with highest severity levels are fixed, then others 

are handled in order. If a critical bug is not scored with 

a high severity, it may be postponed since it is not 

regarded as a priority. Therefore, the fix is not done in 

time, which leads to additional costs.  

 

 

 

 

IV. DISCUSSION 

AI is applicable in all stages of software testing cycles. 

Summary of application areas with algorithms is as 

follows. 

TABLE II.  AI APPLICATIONS IN TESTING 

Stage Application Platform/Algorithm 

Definition Test Case 

Generation 

AIST [7] 

Object Recognition: 

ANN  

Text Generation: 

Random Forest, 

kNN, SVM, 

Bayesian Networks 

 

UML-Based 

Generation 

Implementa

tion 

Code 

Generation 

DeepCoder [11]: NN 

Auto 

Completion 

TabNine [12]: NLP 

Execution Exploratory 

Testing 

Applitools [13] 

Visual AI (AI 

powered cognitive 

vision 

Usability, 

Efficiency 

Execution 

Analysis 

Maintenanc

e 

Refactoring DeepCode [15] 

Self-Healing AnyUI Engine 3.0 

[16] 

Pattern-Based 

Recognition 

Prioritization ANN, GA 

Suite 

Generation 

Search-Based 

Modelling 

Bug 

Handling 

Bug 

Addressing 

Naïve Bayes, K-

Means clustering 

Bug 

Classification 

Bug Scoring 
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Usage of AI in testing activities has lots of advantages. 

Firstly, test coverage is improved by means of AI. 

Machines learn system patterns and tests are generated 

automatically. 

 

In addition, AI applications provide extra speed in all 

stages of testing. Compared to humans, machines 

decide much faster. At least for the rough estimations, 

AI results can provide a quick feedback. 

 

In the same context, manual effort is obviously 

reduced. Instead of manual tasks, machines work for 

defining, executing and maintaining tests.  Moreover, 

outliers are detected by algorithms during. In this way, 

the risk to miss bugs are minimized and cost is reduced 

with early fixes.  

 

Advantages of AI applications in testing are 

unneglectable; however, potential risks should not be 

ignored. Performance, security, control and social 

risks can be faced in failure cases [20]. Error cases can 

result in misleading actions, even security risks or fatal 

consequences [21]. Furthermore; if AI goes out of 

control, or is abused by people, some ethical and social 

concerns can arise. In short, it can be concluded that 

AI is a safe and beneficial tool only when it is under 

control.  

 

V. CONCLUSION AND FUTURE WORK 

 

Rapidly improving software world grows a great 

rivalry and create a pressure on stakeholders in terms 

of time, cost and scope. As other development 

processes, these challenges are faced during testing 

cycles as well. Thus; anything that can help to achieve 

this, is welcome to be adopted into processes. In this 

respect, AI is probably the most promising discipline 

to improve testing by making better and faster 

decisions.  

 

Even though at least for now; it is assumed that 

Artificial Intelligence can never fully replace human 

beings, it can easily be seen that it is already equaling 

or surpassing humans in several tasks such as playing 

games, driving cars and providing recommendations. 

As far as these advances are concerned, the goal is to 

make use of AI in testing as much as possible. 

 

There are possible applications which can be applied 

in all testing stages. AI algorithms provides a 

remarkable benefit on testing activities. It contributes 

with test coverage improvement, manual effort 

reduction, better conclusion and addressing. 

 

As a future work, it is aimed to increase the artificial 

“intelligence” and decrease the necessity for manual 

effort. To achieve this, more application areas are 

supposed to found. However, another aspect of the 

issue is to measure how beneficial the applications are. 

In other words, it is expected to be able to measure 

how intelligent the system is. 
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