
CSEIT195333 | Received : 01 July 2019 | Accepted : 02 August 2019 | July-August -2019 [5 (4) : 198-205]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2019 IJSRCSEIT | Volume 5 | Issue 4 | ISSN : 2456-3307

DOI : https://doi.org/10.32628/CSEIT195434

198

Practical Applications of Artificial Intelligence in Software Testing

Mesut Durukal

IOT DS EU TR PLT, Siemens AS, Istanbul, Turkey

mesut.durukal@siemens.com

ABSTRACT

This paper presents the use of artificial intelligence in each software testing stage. In this context, the necessity

to use AI (artificial intelligence) in software testing with its effects and outcomes is discussed. Then, practical

applications and the advantages are analyzed. The main goal is to make insights about what can be done in

different stages of software testing by means of AI.

Keywords: Artificial Intelligence, Machine Learning, Software Testing, Test Automation.

I. INTRODUCTION

Software applications today have very comprehensive

features and use cases. Most of them interact with

other applications through APIs and connect to

various platforms, which results in a remarkably wide

scope and complexity.

Another fundamental aspect of testing is time, in

addition to scope. When highly dynamic software

lifecycles with continuous integration and

deployment activities are considered, the need to react

quickly against frequent changes can easily be

understood.

Figure 1. Delivery time versus complexity of products

[1].

Products should have competitive features to survive

in modern world. On one hand, they should adapt new

functionalities and be compatible to new technologies.

On the other hand, they should respond to rapid

changes not to be old fashioned and be one of the first

in the market.

The challenges in product development have some

reflections in software testing. Necessity to take quick

actions against gaps introduced by complexity and fast

changes in testing cycles is unneglectable. In this

manner; every possible solution to overcome raising

challenges is tried to be applied on testing. Probably;

at this point, one of the most exciting candidates is the

introduction of machine-based intelligence into

testing [2]. AI practices promise for save on time and

additional coverage.

Mainly; faster, better, and cheaper solutions are the

most promising expectations [4] from usage of AI in

testing. Apart from these expectations, testing

activities are supposed to be more empirical instead of

deterministic situations. The nature of machine

learning supports this idea since machine models are

continuously improved with observations.

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
https://doi.org/10.32628/CSEIT195434

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 198-205

 199

Figure 2. Test coverage gap [3].

To illustrate how big a game changer AI is supposed to

be; only the investments, which is estimated as $15.7

trillion in 2030 [5], would be sufficient. Another

survey [6] foresees the budgets for AI projects by 2025

as $90BN.

Figure 3. AI Projected Revenue in $ Billion [6].

In this paper, possible AI practices on software testing

stages are investigated. Section II describes artificial

intelligence working principles. Section III explains

several applications, where the outcomes are analyzed

in Section IV. Finally, summary of the work is

addressed in Section V. The acknowledgement and

references close the article.

II. METHODS AND MATERIAL

To reduce manual effort, several automation processes

are integrated into projects. However, human testers

are still needed for these activities [7]:

• defining testing goals,

• acquiring the knowledge needed to test the system,

• designing and specifying detailed test scenarios,

• writing the test automation scripts,

• executing scenarios that could not be automated,

• analyzing the results to determine threads.

The difference between machines and human should

be clarified first to get rid of human effort. Machines

are mainly programmed to follow explicit instructions,

where humans learn a lot through observation and

experience. In this point, machine learning (ML) is the

key factor for reducing this gap as much as possible.

Although machine learning is regarded as a

subdiscipline of AI, most of the time they have been

used for each other. Machine learning is defined by

Arthur Samuel in 1959 as “the subfield of computer

science that gives computers the ability to learn

without being explicitly programmed” just like human

beings. If the performance of machine improves with

experiences, it means that it is learning [7].

Machine learning algorithms run in two stages:

Training and execution. First, machine learns the

system; or in other words, it models the system, which

is called as training. Then the execution is performed,

where machine predicts next steps according to learnt

experiences. ML types can be classified as Supervised,

Unsupervised, Semi-Supervised and Reinforcement

Learning.

A. Supervised Learning

Supervised machine learning algorithms apply what

has been learned in the past to new data. They use

labeled examples to learn and predict future events.

Starting from the analysis of a known training dataset,

the algorithm builds a model to make predictions

about the output values. System provides targets for

any new input after sufficient training.

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 198-205

 200

Figure 4. Use of labeling in supervised and semi-

supervised learning [8].

B. Unsupervised Learning

Unsupervised ML algorithms are used when the

information used to train is neither classified nor

labeled. Under these conditions, system builds a model

to describe a hidden structure from unlabeled data.

The system is not expected to estimate the right output,

but it explores the data, draws outcomes from datasets

and finally describes hidden structures from unlabeled

data.

C. Semi-supervised Learning

Semi-supervised ML algorithms fall somewhere in

between supervised and unsupervised learning, since

they use both labeled and unlabeled data for training

– typically a small amount of labeled data and a large

amount of unlabeled data.

D. Reinforcement Learning

Reinforcement ML algorithm is a learning method

that interacts with its environment by producing

actions and discovers errors or rewards. Trial and error

search and reward are the most relevant

characteristics of reinforcement learning. Simple

reward feedback is required for the machine to learn

which action is best; which is known as the

reinforcement signal.

Figure 5. Reinforcement Learning [9].

Lots of applications for supervised (classification,

regression, anomaly detection), unsupervised

(clustering, association, dimension reduction) or

reinforcement learning algorithms are developed in

various models like Neural Networks, Support Vector

Machines, Principal Component Analysis, k Means, k

Nearest Neighbors.

III. APPLICATIONS

AI is utilized in different stages of testing. In this

section, all application methodologies are investigated

in detail.

Figure 6. Software Testing Stages.

E. Test Definition

To ensure product quality, test scenarios are defined

and executed to cover use cases. AI improves quality

and reduces manual effort in test definition stage in

different ways.

Model-Based Test Generation: In this model, machine

learns the use cases in the system by observing actions

and reactions. In this way, the mandatory parameters

and expected inputs are learnt. Similarly, error

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 198-205

 201

messages in negative scenarios are observed. At the

end of the learning phase, test cases are generated to

verify expected results and behaviors. An example for

model-based AI-driven test generation platform called

AIST [7], which explores user scenarios to generate

test cases.

Test Generation from UML Diagrams: A test

generation alternative is analyzing UML diagrams.

Figure 7. A basic activity diagram [10].

As proposed in a research [10], test cases are generated

by covering all the transitions in an activity diagram.

In the study, 10 test cases are generated according to

the diagram.

TABLE I. TEST SCENARIOS GENERATED FROM ACTIVITY

DIAGRAM

Number Scenario

1 B4 -> B1 -> B2 -> B3 -> B5

2 B4 -> B1 -> B2 -> B5 -> B3

3 B4 -> B1 -> B5 -> B2 -> B3

4 B4 -> B5 -> B1 -> B2 -> B3

5 B1 -> B4 -> B2 -> B5 -> B3

6 B1 -> B4 -> B2 -> B3 -> B5

7 B1 -> B4 -> B5 -> B2 -> B3

8 B1 -> B2 -> B3 -> B4 -> B5

9 B1 -> B2 -> B4 -> B3 -> B5

10 B1 -> B2 -> B4 -> B5 -> B3

F. Implementation

In continuous testing environments, no one would

refuse an increase in test implementation speed.

Code Generation: For robots a way to write codes is,

first understanding the problem and then applying the

solution. When the problem is defined with inputs

and outputs, then needed operations are predicted ad

related codes are generated.

Consider how DeepCoder [11] does it: If you want to

filter numbers smaller than 0, and list them after

multiplying with 4 in a reserve sorted order, here is an

example IO:

Figure 8. Input and outputs of the problem [11].

After checking inputs and outputs, according to learnt

patterns, DeepCoder predicts needed operations:

Figure 9. Predicted operations [11].

Auto-Completion: After most used patterns are learnt,

subsequent codes are proposed during implementation.

Tabnine [12] is an example application which

facilitates test implementation.

Figure 10. An auto-completion application: Tabnine.

G. Execution

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 198-205

 202

Exploratory Testing: After new feature deployments,

AI bots click every new button added to the

application to test new functionalities. Additionally,

changes on UI are detected and images removed from

the application are noticed. Consequently, machine

starts to learn about the application and understand

relations between the modules. Finally, test cases are

generated according to these relations.

Usability and Efficiency Tests: Adam Carmi, co-

founder and CTO of Applitools [13], states: “We want

to make sure that the UI itself looks right to the user

and that each UI element appears in the right color,

shape, position, and size.” ML algorithms are used in

their tool Applitools to perform usability and

efficiency tests.

The system is modeled by the machine according to

use cases. Parameters for difficult and easy paths are

extracted, and new designs are oriented by these

trainings.

Execution Analysis: During test executions, AI

algorithms learn patterns and user tendencies by

collecting data, taking screenshots, downloading the

content of web pages and measuring loading times.

Then, properties of new features are estimated, and

the deviations are detected. For instance, if loading

time of a new page is longer than predicted, a warning

is raised. Some outlier detection algorithms are applied

with Info Fuzzy Network [14].

H. Maintanence and Grouping

Refactoring: According to learnt patterns, some

applications like DeepCode [15] proposes solutions

against code smells.

Self-Healing: For UI test automation, unusable and

broken locators are the most challenging problems.

When locators change, tests fail since the codes do not

identify the expected module any more. Self-healing

algorithms are developed to get rid of this challenge.

AnyUI Engine [16] proposes that codes can be

refactored by recognizing most stable properties. In

this way, codes related to changing parameters are

refactored by referring stable ones.

Prioritization: Infinite testing is impossible. In a

limited testing time, the most prior test cases should

be selected and executed. Priority is decided according

to [17]:

• The probability to find an error,

• Uniqueness in terms of scope,

• Complexity or simplicity,

• Fitness for the regression activity.

Figure 11. Test prioritization and reduction with

ANN [4].

Therefore; for prioritization, test cases are evaluated

according to learnings which are collected from the

labelled training sets. Test prioritization is developed

with various approaches such as ANN [4] and Genetic

algorithms [18].

Suite Generation: After a change, at least the

regression suite is executed. ML algorithms train the

relations between test cases and the features; and

decide related test suite for a feature.

It is possible to construct a group of similar tests by

observing the coverages of tests during their

executions [19]:

Branch Coverage: According to hits to a branch;

algorithm calculates the distances of executions to the

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 198-205

 203

target branch and relation between a test and a branch

is estimated.

Line Coverage: Distances are calculated with covered

lines in the code excluding the comments.

Exception Coverage: Exception coverage is a kind of

reinforcement learning and aims as much exceptions

as possible. Tests which throw more exceptions are

rewarded.

Method Coverage: Method coverage approach applies

the same algorithms over methods. Tests are evaluated

according to whether they call methods or not.

I. Bug Handling

Classification: Bug classification provides hints about

the weaknesses of the product. For example, if bugs

mostly heap together on a feature, some actions can be

taken accordingly. In this case, related tests are

prioritized to investigate the feature deeper.

Addressing: For big teams, it is not easy to know every

assignee for all features. In such cases, the address can

be proposed by the machine according to previously

addressed bugs. Correctly assigned bugs are labeled

and the system is trained by the machine. Then

addresses for next bugs are estimated.

Scoring: Scoring of the bugs are very important since

they are handled according to their severities. First

bugs with highest severity levels are fixed, then others

are handled in order. If a critical bug is not scored with

a high severity, it may be postponed since it is not

regarded as a priority. Therefore, the fix is not done in

time, which leads to additional costs.

IV. DISCUSSION

AI is applicable in all stages of software testing cycles.

Summary of application areas with algorithms is as

follows.

TABLE II. AI APPLICATIONS IN TESTING

Stage Application Platform/Algorithm

Definition Test Case

Generation

AIST [7]

Object Recognition:

ANN

Text Generation:

Random Forest,

kNN, SVM,

Bayesian Networks

UML-Based

Generation

Implementa

tion

Code

Generation

DeepCoder [11]: NN

Auto

Completion

TabNine [12]: NLP

Execution Exploratory

Testing

Applitools [13]

Visual AI (AI

powered cognitive

vision

Usability,

Efficiency

Execution

Analysis

Maintenanc

e

Refactoring DeepCode [15]

Self-Healing AnyUI Engine 3.0

[16]

Pattern-Based

Recognition

Prioritization ANN, GA

Suite

Generation

Search-Based

Modelling

Bug

Handling

Bug

Addressing

Naïve Bayes, K-

Means clustering

Bug

Classification

Bug Scoring

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 198-205

 204

Usage of AI in testing activities has lots of advantages.

Firstly, test coverage is improved by means of AI.

Machines learn system patterns and tests are generated

automatically.

In addition, AI applications provide extra speed in all

stages of testing. Compared to humans, machines

decide much faster. At least for the rough estimations,

AI results can provide a quick feedback.

In the same context, manual effort is obviously

reduced. Instead of manual tasks, machines work for

defining, executing and maintaining tests. Moreover,

outliers are detected by algorithms during. In this way,

the risk to miss bugs are minimized and cost is reduced

with early fixes.

Advantages of AI applications in testing are

unneglectable; however, potential risks should not be

ignored. Performance, security, control and social

risks can be faced in failure cases [20]. Error cases can

result in misleading actions, even security risks or fatal

consequences [21]. Furthermore; if AI goes out of

control, or is abused by people, some ethical and social

concerns can arise. In short, it can be concluded that

AI is a safe and beneficial tool only when it is under

control.

V. CONCLUSION AND FUTURE WORK

Rapidly improving software world grows a great

rivalry and create a pressure on stakeholders in terms

of time, cost and scope. As other development

processes, these challenges are faced during testing

cycles as well. Thus; anything that can help to achieve

this, is welcome to be adopted into processes. In this

respect, AI is probably the most promising discipline

to improve testing by making better and faster

decisions.

Even though at least for now; it is assumed that

Artificial Intelligence can never fully replace human

beings, it can easily be seen that it is already equaling

or surpassing humans in several tasks such as playing

games, driving cars and providing recommendations.

As far as these advances are concerned, the goal is to

make use of AI in testing as much as possible.

There are possible applications which can be applied

in all testing stages. AI algorithms provides a

remarkable benefit on testing activities. It contributes

with test coverage improvement, manual effort

reduction, better conclusion and addressing.

As a future work, it is aimed to increase the artificial

“intelligence” and decrease the necessity for manual

effort. To achieve this, more application areas are

supposed to found. However, another aspect of the

issue is to measure how beneficial the applications are.

In other words, it is expected to be able to measure

how intelligent the system is.

VI. ACKNOWLEDGEMENT

I would like to thank my team mates for their precious

help. Additionally, I am very grateful to my manager,

Mr. Kamil Yıldırgan who has always supported and

encouraged me to prepare this paper. Finally, I

appreciate Ms. Elif Yilal, Ms. Buse Ozarslan and Ms.

Eylul Akar who have reviewed the paper and guided

me for the improvements.

VII. REFERENCES

[1] W. Platz, "What’s beyond continuous testing?

AI," SD Times, 2017.

[2] W. Murray, P. Karuppiah, C. Stancombe," On

the way to smart, intelligent, and cognitive QA,"

World Quality Report 2017-18, 9th edition,

2017.

[3] J. Arbon, "AI for Software Testing," Pacific NW

Software Quality Conference, 2017.

[4] Dr. A. P. Nirmala, Md Shajahan, Somnath K,

"Impact of Artificial Intelligence in Software

http://www.ijsrcseit.com/

Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com

Mesut Durukal Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 198-205

 205

Testing," International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology (IJSRCSEIT), ISSN :

2456-3307, Volume 3, Issue 3, pp.1519-1526,

2018.

[5] "Sizing the prize," PwC, World Economic

Forum, Dalian, 2017.

[6] "Which Industries Are Investing in Artificial

Intelligence?," Splunk, Priceonomics Data

Studio, 2018.

[7] T. King, "AI Driven Testing: A New Era of Test

Automation," Japan Symposium on Software

Testing JaSST, 2019

[8] A. R. Shah, C. S. Oehmen, B. Webb-Robertson,

"SVM-HUSTLE—an iterative semi-supervised

machine learning approach for pairwise protein

remote homology detection," Bioinformatics,

Volume 24, Issue 6, 15 March 2008, pp. 783–790,

doi: 10.1093/bioinformatics/btn028

[9] Reinforcement learning [Online] Available

from:

https://en.wikipedia.org/wiki/Reinforcement_le

arning/ 2019.07.19

[10] H. Kim, S. Kang, J. Baik, I. Ko, "Test Cases

Generation from UML Activity Diagrams,"

Eighth ACIS International Conference on

Software Engineering, Artificial Intelligence,

Networking, and Parallel/Distributed

Computing, 2007, doi: 10.1109/SNPD.2007.189

[11] M. Balog, A. Gaunt, M. Brockschmidt, S.

Nowozin, D. Tarlow, "DeepCoder: Learning to

Write Programs," Proceedings of ICLR'17,

March 2017

[12] Tabnine [Online] Available from:

https://tabnine.com/ 2019.07.19

[13] Applitools [Online] Available from:

https://applitools.com/ 2019.07.19

[14] M. Last, M. Freidman, "Black-Box Testing with

Info-Fuzzy Networks," World Scientific, City,

2004.

[15] DeepCode [Online] Available from:

https://www.deepcode.ai/ 2019.07.19

[16] I. Philipp, "AI in Software Testing: A Reality

Check," Tricentis, 2018.

[17] P. Saraph, M. Last, A. Kandell, "Test case

generation and reduction by automated input-

output analysis," Institute of Electrical and

Electronics Engineers Inc., City, 2003.

[18] S. Dhawan, K. S. Handa, R. Kumar,

"Optimization of software testing using genetic

algorithms," In Proceedings of the 11th WSEAS

international conference on Mathematical and

computational methods in science and

engineering (MACMESE'09), World Scientific

and Engineering Academy and Society

(WSEAS), pp. 108-112, 2009.

[19] J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, A.

Arcuri, "Combining multiple coverage criteria in

search-based unit test generation," Springer

International Publishing, Search-Based

Software Engineering, volume 9275 of Lecture

Notes in Computer Science, pp. 93–108, 2015.

[20] Dr. A. S. Rao, "Responsible AI & National AI

Strategies," 4th International Initiatives,

Europian Union Commission.

[21] S. Levin, J. C. Wong, "Self-driving Uber kills

Arizona woman in first fatal crash

involving," The Guardian, March. 19, 2018.

Cite this article as :

Mesut Durukal, "Practical Applications of Artificial

Intelligence in Software Testing", International

Journal of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 5 Issue 4, pp.

198-205, July-August 2019. Available at doi :

https://doi.org/10.32628/CSEIT195434

Journal URL : http://ijsrcseit.com/CSEIT195434

http://www.ijsrcseit.com/
https://doi.org/10.32628/CSEIT195434
http://ijsrcseit.com/CSEIT195434

