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ABSTRACT 

 

Plant Stress detection is a vital farming activity for enhanced productivity of crops and food security. Convolution 

Neural Networks (CNN) focuses on the complex relationships on input and output layers of neural networks for 

prediction. This task further helps in detecting the behavior of crops in response to biotic and abiotic stressors in 

reducing food losses. The enhancement of crop productivity for food security depends on accurate stress 

detection. This paper proposes and investigates the application of deep neural network to the tomato pests and 

disease stress detection. The images captured over a period of six months are treated as historical dataset to train 

and detect the plant stresses. The network structure is implemented using Google’s machine learning Tensor-

flow platform. A number of activation functions were tested to achieve a better accuracy. The Rectifier linear 

unit (ReLU) function was tested. The preliminary results show increased accuracy over other activation 

functions.  
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I. INTRODUCTION 

 

Agriculture forms the basis of food security and 

economic growth in most countries. However, in spite 

of the climatic conditions, most farmers often have to 

deal with different pests and diseases attacking their 

crops. In order to overcome this challenge, accurate 

and timely detection of the pests and diseases would 

likely lead to appropriate application of remedial 

measures. On the contrary, inaccurate and untimely 

detection of pests [1] and disease [2] in plants is a 

common problem in the agriculture industry among 

farmers. This not only increases the cost of crop 

production, but also leads to massive losses leading to 

hunger and food insecurity [3], [4]. This crop failure is 

as a result of plant stress caused by the pests and/or 

diseases.  

 

Plant stress can either be biotic or abiotic. Biotic 

stresses are as a result of living factors such as fungi, 

parasites and bacteria, and lead to deficiencies in 

nutrients [5]–[7]. Conversely, abiotic stresses are as a 

result of non-living factors mostly environmental 

related [8], [9]. Coincidentally, all these stresses 

mainly manifest themselves in the physical 

appearance of the plant. Consequently, distinguishing 
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between the different types of plant stress and their 

stressors is common challenge. Additionally, a number 

of these stressors may exhibit similar symptoms on a 

plant. To resolve this, a deeper understanding of image 

signatures [10] of the various plant stresses is crucial. 

 

Appropriate understanding of these signatures will not 

only aid in comprehending how the several input 

variables affect the resulting output, but also provide 

an insight on how the variables are correlated. 

Nonetheless, data related to plant stress detection is 

non-linear in nature, hence plant stress prediction 

becomes a challenge. Even though, regression [11] 

techniques can be used to solve the plant stress 

problem; regression aids in estimation of relationships 

between dependent and detector (independent) 

variables. However, it results to over fitting and is too 

simple to capture a variety of datasets. Similarly, 

Logistic regression [12] also results to overfitting. 

Random forest [13] calculates the mean of decision 

trees faster and can be used to train models.  

 

Neural networks [14] are well known for detection 

and prediction of stresses in plants. The multiple layers 

enable it to accurately handle highly complex tasks. 

However neural networks require high processing 

power and time which may not be available to farmers 

which also lack the desired knowledge. A modification 

of the conventional neural network is a deep neural 

network which is made up of more than three layers 

[15]. A deep neural network is able to abstract features 

of both the input and output patterns and offers more 

accurate results. However, just like its predecessor, it 

requires even more processing capability beyond the 

reach of many farmers. Nevertheless, the increasing 

processing power of smart phones at a lower cost is a 

promising trend which if properly harnessed, can 

alleviate this challenge.  

 

This is strongly reinforced by the fact that several 

researches depict the use of smart-phone [16], [17],[18] 

cameras in the assessment of plant stress. This paper 

focuses on detection of multiple plant diseases in 

different conditions. Deep Convolution Neural 

Networks (CNN) was applied for analysis based on 

tomato images captured over a period of six months. 

Our empirical results show that accuracy in early 

detection of plant stress using smartphone cameras 

improved as images were subjected to pre-processing 

and training using deep convolution neural networks.  

 

The rest of this paper is organized as follows, Section 

II presents the methods and materials that were used 

in the study; images were captured preprocessed and 

classified then accuracy measured using mean absolute 

percentage error. Section III, illustrates the deep 

convolution neural network model developed, and 

analysis of the accuracy of the model done based on 

the SoftMax activation function, and confusion Matrix. 

Section IV outlines the System Model; Section V the 

Results and Discussion, outlining accuracies assessed 

based on the training steps and the training set. 

Discussed in Section VI is the Conclusion and 

recommendation for future work. 

 

II. METHODS AND MATERIAL 

 

This section discusses the different methods and 

materials that were used in the study. It also explains 

the data utilized in the study and how it was collected. 

 

A. METHODS 

 

To assess the accuracy of the plant stress detection 

digital imaging model, several metrics were tested 

which include mean absolute percentage error 

(MAPE), root mean square error (RMSE) and mean 

square error (MSE). 

 

The mean absolute percentage error (MAPE) was used 

to measure how accurate the digital imaging 

prediction system was able to measure accurately the 

accuracy of the model in percentage format and 

calculate the average absolute percentage error for a 

http://www.ijsrcseit.com/


Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com  

 

Chege Kirongo et al Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 263-270 

 265 

given period of time minus actual value divided by 

actual value. Where At is the actual value, Ft the 

prediction value. The model confusion matrix (figure 

5) contains higher values along the diagonal from top 

left to bottom right pointing the model accuracy. The 

precision score and the recall score were arrived at by 

passing in the actual and the predicted classes. 

 

𝑀 =
1

𝑛
∑

𝐴𝑡−𝐹𝑡

𝐴𝑡

𝑛
𝑡=1 . . . . . . . . .  . . . . . . . . . . . .  . .  (1) 

 

The Root Mean Square error (RMSE) utilizes the 

regression line to predict the average y value 

associated with a given x value, where y’ is the forecast 

load or prediction load, y is the actual load and n is the 

test set size. 

 

𝑅𝑀𝑆𝐸𝑟𝑟𝑜𝑟𝑠 = √
∑ (𝑦�̅�−𝑦𝑖) 2𝑛

𝑖=1

𝑛
  . . . . . . . . . . . .  (2) 

 

The Mean Square Error (MSE) measures the average 

squares of the errors as compared between the actual 

value and the estimated value. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑌𝑖)

2̅̅ ̅̅ ̅̅ ̅̅𝑛
𝑖−1  . . . . . . . . . . . . . . . (3) 

 

B. MATERIALS 

The choice of a convolution neural network structure 

relies on; identification and selection of both the 

output and input variables to be used, building of the 

convolution neural network model, pre-processing, 

training, testing, and validation of the data, training 

the deep CNN model with the training data set and 

validation of the deep CNN model. 

 

The identification and selection of the required input 

images to the CNN is a vital component in the design. 

Disease signatures informed the input for 

normalization [19] to accommodate the application of 

activation functions where diseases detected 

represents the actual data value with relation to the 

neural network model.  

 

The SoftMax for hidden layers in the model were 

applied to provide probable output options. The 

activation function for the neurons is SoftMax based 

on the sigmoid function in classification of tasks.  

 

The datasets are categorized into training set, 

validation set and testing set. The test and validation 

sets are used for evaluation of errors through 

comparison of the actual data with the results acquired. 

Training of the convolution neural network results to 

the determination of the weights used in the network 

inorder to minimize the error; for network validation 

at the end of the training process. 

 

In [7] Deep Convolution Neural Network-based 

algorithm was applied based on fungal infections 

ensuing to yield losses as a result of infestation that 

were detected late after losses had been caused. Deep 

CNN among other image analysis-based 

methodologies has proven to be efficient in 

autodetection of diseases in plant images. In this work 

we extend previous work by [7] in real-time detection 

of plant diseases by extending on CNN algorithm. This 

paper analyses early identification accuracy of tomato 

diseases by use of TensorFlow deep learning platform. 

 

III. IMPLEMENTATION OF THE DEEP 

CONVOLUTION NEURAL NETWORK MODEL 

 

The TensorFlow deep learning [20]  platform was 

utilized in the development of the Deep Convolution 

Neural Network (DCNN) Model for the development 

of the digital imaging model for plant stress detection. 

TensorFlow [21] is applied in numerical computation 

of mathematical graphical data. The edges of the 

graphs are composed of multidimensional data arrays 

known as tensors that communicate between nodes.  

 

The architecture of the TensorFlow is later deployed 

to either Central or Graphical Processing Units on a 

smartphone device, server or desktop with a single 

http://www.ijsrcseit.com/


Volume 5, Issue 4, July-August-2019 | http://ijsrcseit.com  

 

Chege Kirongo et al Int J Sci Res CSE & IT. July-August-2019 ; 5(4) : 263-270 

 266 

Application Process Interface (API). Originally 

TensorFlow was developed by Google research team 

for machine learning and deep neural network 

research [12]. In this study we develop model for a 

deep convolution neural network on a TensorFlow 

platform and test it using SoftMax activation function 

in the output layer to provide a range of probabilities 

to the various output options. 

  

A. Structure of the DCNN 

Neurons and Layers are key in the modeling of neural 

network structures. For CNN the number of input and 

output neurons is predetermined based on the 

dimension of the training set and the prediction sets. 

The structure of the CNN model used in this study is 

given in Figure 1. 

 

Figure 1 : CNN based plant stress detection 

Progressive image resizing [22] is a technique applied 

on the dataset during the training to build an image 

classifier using Keras. Specifically, this study uses 

progressive resizing on the dataset to build a CNN that 

learns to distinguish between twenty seven different 

kinds of tomato diseases and pests in where in this 

study is called Tunza Leaf Tomato Model Dataset. 

Progressive image resizing affects the accuracy, 

training, and transfer of learning within the 

convolution neural network.  

B. Activation Function 

An activation function is a deciding parameter used for 

evaluation and capturing the trends or feature patterns 

from within the data. If the output value originating 

for the activation function is zero, the feature is absent 

and if the value is one the feature is present in the data. 

In computational networks, the activation function of 

a node defines the output from that node given an 

input or a set of inputs. A standard computer chip 

circuit function of “on” and “off” corresponding to ‘1’ 

and ‘0’ depending on the input. This relates to how 

linear perceptron in neural networks operate. In 

artificial neural networks this function is also referred 

to as the transfer function. An activation function was 

used for the neural network to determine which 

neurons should be activated.  

𝑦 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (∑(𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐵𝑖𝑎𝑠) + 𝐵𝑖𝑎𝑠)  . . .  (4) 

In training of this neural network model, activation 

function plays a very important function in regulation 

of the weights. In this study, we have used a non-

linear sigmoid for hidden layers in the model. 

1) SoftMax 

Since our model comprises of 3 possible outputs, the 

SoftMax method (equation 5) is used to determine the 

probable disease that the passed image may be 

suffering from. The CNN Model based algorithm was 

used in this study in detection of multiple tomato 

diseases. The performance of the model was analyzed 

in detection of three tomato plant diseases: Fungal 

Diseases including, Early Blight (Alternaria leaf spot), 

Fusarium wilt, and Bacterial Disease including 

bacterial speck, spot and canker. The formula used in 

classification tasks like this one.  

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑𝐾

𝑘=1𝑒𝑧𝑘
𝑓𝑜𝑟 𝑗 = 1, . . . , 𝐾.. .. . . . . . . . . .  (5)  
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This activation function reduces the output of each 

class in this case to between 0 and 1 and divide by the 

sum of outputs therefore giving their probability.  

 

IV.  SYSTEM MODEL 

 

A training data set necessary for development and 

implementation of the convolution neural network is 

vital. It is necessitated by the availing of historical 

image data during the design phase so as to determine 

how many neurons, layers, and activation function to 

be used. In this study the system model required 

parameters including the various plant stresses that 

consists of pests and diseases as input. Plant diseases 

that were detected from the mobile phone cameras 

using a combination of various activation functions in 

the model were classified as seen in Figure 2. 

 

 

Figure 2 : Prediction of Multiple images of diseases 

 

SoftMax Activation Function combined with the 

Sigmoid Combination, and four hidden layers were 

selected to do the prediction of the plant disease. The 

number of neurons is randomly varied to obtain better 

accuracy. 

 

TensorFlow is used to train and test the designed 

digital imaging model. TensorFlow provides 

TensorFlow program (TensorBoard) for easy 

understanding debugging and optimization. 

TensorBorad graph in TensorBoard is shown in Figure 

3. 

 

 

Figure 3 : TensorBoard for Case 1. 

 

V. RESULTS AND DISCUSSIONS 

 

An ADAM optimizer inside TensorFlow framework 

was used to train our model. ADAM Optimizer uses a 

gradient-descent algorithm. The method has a faster 

convergence rate.  

 

The model summary shows that the input layer is a 

four-dimensional tensor with batch, height, width, 

and channels. The height is 224 pixels and the width 

are 224 pixels, the channels are 3 representing the 

RGB and the image batch shape was tested. The figure 

4 shows the digital imaging model summary. 

 

 

Figure 4 : Digital Imaging Model Summary 
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A. Graphs and Confusion Matrix of Accuracy 

 

Figure 5 : Confusion Matrix showing the accuracy 

level of the Digital imaging model 

 

An 8 by 8 matplotlib graph was created to measure the 

result of the model with regards to accuracy and loss 

related to the training steps. The y axis was limited 

from 0 to 1 to represent percentage. As the training 

increased the accuracy increased while the loss 

decreased. This has been illustrated in Figure 6. 

 

 

Figure 6 : A graph of loss and accuracy against 

training steps 

The accuracy of the model continues to increase with 

the increase in the training set. This is illustrated in 

the graph in Figure 7. 

 

 

Figure 7 : Graph of accuracy level against training set 

 

VI. CONCLUSION 

 

Food security is achievable through application of 

deep convolution neural networks to detect diseases in 

plants at an early stage. Tomato image datasets 

captured over a six month period was used to predict 

detection accuracy of plant stress. A selected category 

of activation functions was trained, tested, and 

validated with neural networks. The results indicate 

that the SoftMax and ADAM optimizer performs 

better resulting to higher accuracy levels. Accuracy 

against training sets and training steps increase as 

losses reduce to levels of over 90% accuracy. The 

scalability of the model in future can be done so as to 

achieve accuracy as applied for pest stress in tomato 

and maize crops. 
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