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ABSTRACT 

 

Most data of interest today in data-mining applications is complex and is usually represented by many different 

features. Such high-dimensional data is by its very nature often quite difficult to handle by conventional 

machine-learning algorithms. This is considered to be an aspect of the well known curse of dimensionality. 

Consequently, high-dimensional data needs to be processed with care, which is why the design of machine-

learning algorithms needs to take these factors into account. Furthermore, it was observed that some of the arising 

high-dimensional properties could in fact be exploited in improving overall algorithm design. One such 

phenomenon, related to nearest-neighbor learning methods, is known as hubness and refers to the emergence of 

very influential nodes (hubs) in k-nearest neighbor graphs. A crisp weighted voting scheme for the k-nearest 

neighbor classifier has recently been proposed which exploits this notion.  
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I. INTRODUCTION 

 

In recent years, high dimensional search and retrieval 

have become very well studied problems because of 

the increased importance of data mining applications. 

Over the years, various clustering algorithms have 

been proposed, which can be roughly divided into four 

groups: partitional, hierarchical, density based, and 

subspace algorithms. Algorithms from the fourth 

group search for clusters in some lower dimensional 

projection of the original data, and have been 

generally preferred when dealing with data that are 

high dimensional [2], [3], [4], [5]. The motivation for 

this preference lies in the observation that having 

more dimensions usually leads to the so-called curse of 

dimensionality, where the performance of many 

standard machine-learning algorithms becomes 

impaired. 

 

Typically, most real applications which require the use 

of such techniques comprise very high dimensional 

data. For such applications, the curse of high 

dimensionality tends to be a major obstacle in the 

development of data mining techniques in several 

ways. For example, the performance of similarity 

indexing structures in high dimensions degrades 

rapidly, so that each query requires the access of 

almost all the data[6]. 

 

Spectral clustering has attracted increasing attention 

due to its superior performance on some challenging 

clustering tasks [2]. Because of the capacity of 

partitioning data with complexed structures, spectral 

clustering has been widely applied in many research 

fields, including image segmentation [3], [4], circuit 

layout [5], video retrieval [6] and bioinformatics [7]. 

However, when the number of data points becomes 

large, the applicability of spectral clustering is limited. 

The general spectral clustering method consists of two 
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main steps: (1) constructing a similarity matrix; (2) 

calculating the eigendecomposition of the 

corresponding Laplacian matrix. For a dataset with n 

data points, the two steps take computational 

complexities of O(n2) and O(n3) respectively, which is 

an unbearable burden for large-scale clustering 

problems. Many accelerated spectral clustering 

methods have been proposed to overcome the 

scalability problem by using sampling techniques. 

Fowlkes et al. [12] apply the Nystrom method to 

reduce the high complexity in the eigen-

decomposition step. By randomly selecting a small 

subset of samples, a similarity sub-matrix is 

constructed based on these samples. The calculated 

eigenvectors based on the similarity sub-matrix are 

used to estimate an approximation of the eigenvectors 

of the original similarity matrix. Li et al. [13] further 

accelerate the Nystr¨om approximation based spectral 

clustering by using the randomized low-rank matrix 

approximation algorithms. 

 

Instead of reducing the complexity in the 

eigendecomposition step of spectral clustering, several 

methods reduce the data size beforehand to construct 

the similarity matrix. The K-means based approximate 

spectral clustering (KASP) method [14] applies K-

means with a large cluster number p to find p center 

points. The general spectral clustering algorithm is 

then performed on the p cluster centers, with each 

data point being assigned to the same cluster as its 

nearest center. A similar method has been proposed by 

Shinnou and Sasaki [15], which removes the data 

points close to the p centers, and the general spectral 

clustering is performed on the remaining data points 

plus the p centers. The removed data points are finally 

assigned to the cluster as their nearest centers. 

 

The recently described phenomenon of hubness has 

been marked as potentially highly detrimental. The 

term was coined after hubs, very frequent neighbor 

points which dominate among all the occurrences in 

the k-neighbor sets of inherently high-dimensional 

data. Most other points either never appear as 

neighbors or do so very rarely. They are referred to as 

anti-hubs. This property is usually of a geometric 

nature and does not reflect the semantics of the data, 

as discussed in the context of music retrieval. The 

researchers have noticed that some songs are very 

frequently being retrieved, but were unable to 

attribute these occurrences to any similarity 

observable by people. There is no easy way out, as 

demonstrated in [17], since dimensionality reduction 

techniques fail to eliminate the neighbor occurrence 

distribution skewness for any reasonable 

dimensionality of the projection space. The skewness 

decreases only when mapping to very low-

dimensional spaces, where too much potentially 

relevant information is irretrievably lost. Therefore, 

hubness remains a phenomenon which needs to be 

taken into account when using nearest neighbor 

methods on high-dimensional data. Shared neighbor 

distances are sometimes used as secondary distance 

measures when dealing with highdimensional data, 

usually in clustering applications Similarity between 

points is defined as the number of shared neighbors in 

their k- neighbor sets, and distances between points 

are then usually defined in one of the several 

essentially equivalent ways, Shared neighbor distances 

have been mentioned as a potential cure for the curse 

of dimensionality. We have chosen to focus on using 

the shared neighbor distances in supervised learning, 

k-nearest neighbor (k-NN) clustering particular 

(where the neighbors are determined based on the 

secondary distances)[16][17]. Researcher have 

measured the hubness of the induced shared neighbor 

spaces and have shown that hubness-awarek-nearest 

neighbor classification leads to significant 

improvements over the basic k-NN even when using 

these secondary distances instead of the original 

underlying metrics. In other words, shared neighbor 

distances do not eliminate hubness, so they do not 

entirely overcome the curse of dimensionality. 

Hubness has an impact on the forming of the shared 

neighbor similarity scores, so we propose a new 
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hubness-aware method for calculating shared 

neighbor similarities/distances. 

 

II. LITERATURE SURVEY 

 

Here are the survey of some of the clustering methods 

usually used in data mining. 

 

1) Distribution based methods :  It is a clustering 

model in which we will fit the data on the 

probability that how it may belong to the same 

distribution. The grouping done may be normal or 

gaussian . Gaussian distribution is more prominent 

where we have fixed number of distributions and 

all the upcoming data is fitted into it such that the 

distribution of data may get maximized. This result 

in grouping which is shown in figure 1 

 
Fig. 1 Distribution Based Method 

 

2) Centroid based methods :This is basically one of 

iterative clustering algorithm in which the clusters 

are formed by the closeness of data points to 

the centroid of clusters. Here, the cluster center 

i.e. centroid is formed such that the distance of data 

points is minimum with the center. This problem is 

basically one of NP- Hard problem and thus 

solutions are commonly approximated over a 

number of trials. 

3) Connectivity based methods: The core idea of 

connectivity based model is similar to Centroid 

based model which is basically defining clusters on 

the basis of closeness of data points .Here we work 

on a notion that the data points which are closer 

have similar behavior as compared to data points 

that are farther .It is not a single partitioning of the 

data set , instead it provides an extensive hierarchy 

of clusters that merge with each other at certain 

distances. Here the choice of distance function is 

subjective. These models are very easy to interpret 

but it lacks scalability. 

4) Density Models Density based clustering methods 

allow the identification of arbitrary, not necessarily 

convex regions of data points that are densely 

populated. The number of clusters does not need to 

be specified beforehand; a cluster is defined to be a 

connected region that exceeds a given density 

threshold. Local scaling in density based clustering, 

which determines the density threshold  based on 

the local statistics of the data. The local maxima of 

density are discovered using a k-nearest-neighbor 

density estimation and used as centers of potential 

clusters. Each cluster is grown until the density falls 

below a pre-specified ratio of the center point’s 

density. The resulting clustering technique is able 

to identify clusters of arbitrary shape on noisy 

backgrounds that contain significant density 

gradients. 

5) Subspace clustering : Subspace clustering is an 

unsupervised learning problem that aims at 

grouping data points into multiple clusters so that 

data point at single cluster lie approximately on a 

low-dimensional linear subspace. Subspace 

clustering is an extension of feature selection just as 

with feature selection subspace clustering requires 

a search method and evaluation criteria but in 

addition subspace clustering limit the scope of 

evaluation criteria. Subspace clustering algorithm 

localize the search for relevant dimension and 

allow to them to find cluster that exist in multiple 

overlapping subspaces. Subspace clustering was 

originally purpose to solved very specific computer 

vision problem having a union of subspace 

structure in the data but it gains increasing 
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attention in the statistic and machine learning 

community. People use this tool in social network, 

movie recommendation, and biological dataset. 

Subspace clustering raise the concern of data 

privacy as many such application involve dealing 

with sensitive information. Data points are assumed 

to be incoherentas it only protects the differential 

privacy of any feature of a user rather than the 

entire profile user of the database. 

There are two branches of subspace clustering 

based on their search strategy. 

1. Top-down algorithms find an initial clustering in 

the full set of dimension and evaluate the subspace 

of each cluster. 

2. Bottom-up approach finds dense region in low 

dimensional space then combine to form clusters. 

 

III. Hub-Based Clustering 

 

Hubness, which is the tendency of some data points in 

high-dimensional data sets to occur much more 

frequently in k-nearest neighbor lists of other points 

than the rest of the points from the set, can in fact be 

used for clustering. In experiments on synthetic data 

author show that hubness is a good measure of point 

centrality within a high-dimensional data cluster and 

that major hubs can be used effectively as cluster 

prototypes [1]. 

 

Consequences and applications of hubness have been 

more thoroughly investigated in other related fields: 

classification, image feature representation, data 

reduction, collaborative filtering, text retrieval, and 

music retrieval. In many of these studies it was shown 

that hubs can offer valuable information that can be 

used to improve existing methods and devise new 

algorithms for the given task[8-11]. 

 

If hubness is viewed as a kind of local centrality 

measure, it may be possible to use hubness for 

clustering in various ways. To test this hypothesis, 

researcher opted for an approach that allows 

observations about the quality of resulting clustering 

configurations to be related directly to the property of 

hubness, instead of being a consequence of some other 

attribute of the clustering algorithm. Since it is 

expected of hubs to be located near the centers of 

compact subclusters in high-dimensional data, a 

natural way to test the feasibility of using them to 

approximate these centers is to compare the hub-based 

approach with some centroid-based technique. For 

this reason, the considered algorithms are made to 

resemble K-means, by being iterative approaches for 

defining clusters around separated high-hubness data 

elements [1]. 

 

Centroids and medoids in K-means iterations tend to 

converge to locations close to high-hubness points, 

which implies that using hubs instead of either of 

these could actually speed up the convergence of the 

algorithms, leading straight to the promising regions 

in the data space.  

 

Fig. 2 Hubness based K-Means clustering 

 

Consider the simple example shown in Fig. 2 where 

The red dashed circle marks the centroid (C), yellow 

dotted circle the medoid (M), and green circles denote 

two elements of highest hubness (H1; H2), for 

neighborhood size 3. This mimics in two dimensions 

what normally happens in multidimensional data, and 

suggests that not only might taking hubs as centers in 

following iterations provide quicker convergence, but 

that it also might prove helpful in finding the best end 

configuration. Centroids depend on all current cluster 

elements, while hubs depend mostly on their 

neighboring elements and, therefore, carry localized 

centrality information. 

http://www.ijsrcseit.com/


Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com  

 

Archana Chaudahri et al Int J Sci Res CSE & IT,  January-February-2020 ; 6 (1) : 01-07 

 5 

Computational complexity of hubness-based 

algorithms is mostly determined by the cost of 

computing hubness scores. Several fast approximate 

approaches are available. It was demonstrated that it is 

possible to construct an approximate k-NN graph from 

which hubness scores can be read in 𝜃(𝑛𝑑𝑡)  time, 

where the user-defined value t > 1 expresses the 

desired quality of graph construction. It was reported 

that good graph quality may be achieved with small 

values of t, which we were able to confirm in our 

initial experiments. Alternatively, locality-sensitive 

hashing could also be used, as such methods have 

become quite popular recently. 

 

IV. The Emergence of Hubs 

 

Hubness is closely related to the aforementioned 

concentration of distances in highdimensional spaces. 

If distances do concentrate for a given data set, then its 

points are lying approximately on a hypersphere 

centered at the data mean. Naturally, if data is drawn 

from several distributions, as is usually the case in 

clustering problems, this could be rephrased by saying 

that data are lying approximately on several 

hyperspheres centered at the corresponding 

distribution means. However, it has been shown that 

the variance of distances to the mean is still non-

negligible, regardless of the concentration 

phenomenon – for any finite number of dimensions 

[18]. This implies that some of the points will still end 

up being closer to the data (or cluster) mean than other 

points. It is well known that points closer to the mean 

tend to, on average, be closer to all other points, for 

any observed dimensionality. However, in high-

dimensional data, this tendency is amplified [19]. On 

average, points which are closer to all other points will 

naturally have a higher probability of being included 

in k-nearest-neighbor lists of other points in the data 

set, which gives rise to an increase in their hubness 

scores. 

 

 

V. Relation of Hubs to Data Clusters 

 

There has been some previous work on how well high-

hubness elements cluster, as well as the general impact 

of hubness on clustering algorithms [119]. A 

correlation between low-hubness elements and 

outliers was also observed. A low hubness score 

indicates that a point is on average far from the rest of 

the points and hence probably an outlier. In high-

dimensional spaces, however, low-hubness elements 

are expected to occur by the very nature of these 

spaces and data distributions. These data points will 

lead to an average increase in intra-cluster 

dissimilarity. It was also shown for several clustering 

algorithms that hubs do not cluster well compared to 

the rest of the points. This is due to the fact that some 

hubs are actually close to points in different clusters. 

Hence, they also lead to a decrease in inter-cluster 

dissimilarity. However, this does not necessarily hold 

for an arbitrary cluster configuration. It was already 

mentioned that points closer to cluster means tend to 

have higher hubness scores than the rest of the points. 

A natural question which arises is: Are hubs medoids? 

When observing the problem from the perspective of 

partitioning clustering approaches, of which K-means 

is the most commonly used representative, a similar 

question might also be posed: Are hubs the closest 

points to data centroids in clustering iterations? To 

answer this question, we ran K-means++ [20] multiple 

times on several randomly generated Gaussian 

mixtures for various fixed numbers of dimensions, 

observing the high-dimensional case. Researcher  

measured in each iteration the distance from current 

cluster centroid to the medoid and to the hub, and 

scaled by the average intracluster distance. This was 

measured for every cluster in all the iterations, and for 

each iteration the minimal and maximal distance from 

any of the centroids to the corresponding hub and 

medoid were computed. 

 

It can be noticed that, in the low-dimensional case, 

hubs in the clusters are far away from the centroids, 
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even farther than average points. There is no 

correlation between data means and high-hubness 

instances in the low-dimensional scenario. On the 

other hand, for the high-dimensional case, we observe 

that the minimal distance from centroid to hub 

converges to minimal distance from centroid to 

medoid. This implies that some medoids are in fact 

cluster hubs. Maximal distances to hubs and medoids, 

however, do not match. There exist hubs which are 

not medoids, and vice versa. Also, we observe that 

maximal distance to hubs also drops with iterations, 

hinting that as the iterations progress, centroids are 

becoming closer and closer to data hubs. This brings us 

to the idea that will be explained in detail in the 

following section: Why not use hubs to approximate 

data centers? After all, we expect points with high 

hubness scores to be closer to centers of relatively 

dense regions in high-dimensional spaces than the rest 

of the data points, making them viable candidates for 

representative cluster elements. We are not limited to 

observing only the points with the highest hubness 

scores, we can also take advantage of hubness 

information for any given data point. More generally, 

in case of irregularly shaped clusters, hubs are 

expected to be found near the centers of compact sub-

clusters, which is also beneficial. 

 

VI. Conclusion and Future Work 

 

Hub-based algorithms are designed specifically for 

high dimensional data. This is an unusual property, 

since the performance of most standard clustering 

algorithms deteriorates with an increase of 

dimensionality. The existing algorithms represent 

only one possible approach to using hubness for 

improving high-dimensional data clustering. It is also 

intended to explore other closely related research 

directions, including kernel mappings and shared 

neighbor clustering. This would allow us to overcome 

the major drawback of the existing methods detecting 

only hyper spherical clusters, just as K-Means. 

Additionally, one can explore methods for using hubs 

to automatically determine the number of clusters in 

the data. 
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