
CSEIT194917 | Published – 30 Sep 2020 | September-2020 [4 (11) : 35-41]

National Conference on Research Challenges and Opportunities in Digital and Cyber Forensics

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2020 IJSRCSEIT | Volume 4 | Issue 11 | ISSN : 2456-3307 (www.ijsrcseit.com)

35

Data Structures - A Comparative Analysis and Application in

Cyber Security
K Reshma, Reem Fatima, Ria Mohan

Department of Information Science & Engineering, New Horizon College of Engineering, Outer Ring Road,

Marathahalli, Bangaluru, India

ABSTRACT

Data handling in C is a pre-ordained part of programs. Computer programs often process data, so we require

competent ways in which we can access or deploy data. In order to do this, we use a structure called “data

structure". Data Structure is a data organization, management, and storage system that enables efficient

access and amendment. Data Structures being the mainstay of every software, a good expertise over the

subject is essential for all software applications under the field of cyber security. Data Structures is about

interpreting data elements in terms of some association, for better organization and storage. In this paper,

we'll be drawing a contrast of the various data structures that are used in the C programming language and

quoting its applications in cyber security. Doing so will give us a perception on how to capitalize on the

performance of a program.

Keywords : Data handling, efficient, organized, data organization, cyber security.

I. INTRODUCTION

A Data structure is a data management,

organization, and storage format that facilitates

efficient access and alteration. More precisely, a

data structure is a set of data values, the

relationships among them, and the functions that

can be applied to the data.

Data structures deals with the study of how the data

is organised in the memory, how effectively the

data can be retrieved and manipulated and possible

ways in which different data items are logically

related. They represent the logical relationship that

exists between individual elements of data to carry

out certain tasks. [1]

Data structures can be categorized into Primitive

data structures and non-primitive data structures.

Further non primitive data structures can be

grouped as linear data structures and non- linear

data structures.

Examples of primitive data structure- int, float,

char etc. Examples of non-primitive data structure-

arrays, structures etc. Examples of linear data

structure- arrays, lists, stacks, queues. Examples of

non-linear data structure- trees, graphs.

Arrays are type of data structures that can store a

fixed size sequential collection of elements of the

same type.[2]

Array is used to store similar data items. Instead of

declaring individual variables such as num1, num2,

num3,…….numN we can declare one array

variable with the same numbers and use num[1],

num[2], num[3],….num[N] to represent individual

variables. A specific element in array is accessed

by index.

http://ijsrcseit.com/

Volume 4, Issue 11, September-2020 | www.ijsrcseit.com 2

Declaring arrays:

datatype

arrayName[size];

ex. Int array[100];

Initialising arrays:

Int a[5]={23,54,67,89,43}

Accessing arrays:

An array element can be accessed by indexing array

name.

Fig. 1. Representation of an Array

A. Stack

A stack is a data structure which stores the

elements, retrieves the elements in a sequential way

using LIFO (Last In First Out) policy.

LIFO- Last In First Out means that last added

element is removed first.

The insertion and deletion operations on stack are

done at one end called top. The insertion operation

of stack is called push and the deletion operation is

called pop.

When an element is inserted into the stack, the

overflow condition is checked, when an element is

removed from the stack underflow condition is

checked. [3]

Overflow:

top==[MAX-1]

Underflow: top==-1

When inserting element in stack, increment top

value and insert the element. When removing

element from stack, remove top most element and

decrement the top index.

Fig. 2. Representation of a Stack

Fig. 3. Stack Operations

B. Queue

A queue is a data structure which stores the

elements, retrieves the elements in a sequential way

using FIFO (First In First Out) policy.

FIFO- First In First Out means that first added

element is removed first.

The insertions in a queue are done at the rear end

of the queue and the deletions are done at the

front end of the queue.

The insertion operation of queue is called en-queue

and the deletion operation is called de-queue.

Volume 4, Issue 11, September-2020 | www.ijsrcseit.com 3

When an element is inserted into the queue, the

overflow condition is checked, when an element is

removed from the queue underflow condition is

checked.[4]

Overflow:

rear==arraysize

Underflow:

front==rear

When inserting element in queue, insert the

element to the rear position and then increment

rear value. When removing element from queue,

initialize the front element to 0 and increment the

front value.

Fig. 4. Representation of a Queue

Fig. 5. Queue Operations

D. Linked List

It is a dynamic data structure which consists of

non-sequential collection of data items. It is called

linear data structure because of its appearance, in

which elements are stored at non- contiguous

memory locations but are linked to each other

using pointers.

Linked list is made up of nodes. Each node consists

of a data field and a reference link to the

successive node.

Linked list operations involves the traversal of

nodes which is done using the temporary

variable.[5]

Advantages of linked list over arrays - Dynamic

size and ease of insertion/deletion.

Terms involved in linked list:

Link – Each and every link can store some data

called an element of the linked list.

Next – Each of the links contain a link to the next

link or element called Next.

First − A Linked List as a whole contains the

connection link to the first link in the list called

First.

Operations supported by a linked list: Insertion −

Adds an element to the linked list.

Deletion − Deletes an element from the linked list.

Display − Displays the entire list.

Search − Searches an element in the linked list

using the given key.

Delete − Deletes an element in the linked list

using the given key or by default.

Fig. 6. Representation of a Linked List

Fig. 7. Linked list Insertion operation

Fig. 8. Linked list Deletion operation

E. Trees

It’s a structure that contains nodes which can be

connected by edges. Different tree data structures

Volume 4, Issue 11, September-2020 | www.ijsrcseit.com 4

allow quicker and easier access to the data as it is a

non-linear data structure.

The types of trees are Binary search tree(most

common), AVl tree and B-tree

In this section, we will be seeing an overview of

binary search trees. Its main purpose is for data

storage, however binary trees have a unique

requirement; each node can only have a total

number of two children, and each child can again

have only two children and so on. Binary search

trees fulfill the purpose of both a sorted array and

linked lists.

Fig. 9. Representation of a Tree Some terms used

in Binary Trees:

Edge: a line connecting two nodes.

Degrees: the complete no. of branches from one

node.

Root: the topmost node of tree, and only path

from root to other nodes.

Parent: nodes after the root are called parents if

they have sub- branches.

Child: each sub node is called a child, and their

parent is that node to which they’re connected to.

Leaf: if there is a node that has not even one child,

it’s called leaf node.

Levels: It’s to show what generation of

parent/child belongs to.

Sub-tree: each segment consisting of a parent and

two children apart from the root node is called a

sub-tree.

Traversing: methodology for searching a key

element in the tree.

Key: the value that the user wishes to find in the

tree.

Given a binary tree, there are 3 ways to traverse

the tree and find the element the user wishes to

find. The 3 operations are called; pre-order, in-

order, post-order. After an insertion function is

given to take in the input from the user, any of

these 3 search operations are executed.

Trees Applications & Advantages:

Time complexity for a non-linear data structure is

less.

All the forms of trees are used in a specific

environment and it’s a customizable data

structure.

The stability and reliability that trees lend in

terms of security is efficient!

F. Graphs

This data structure is similar to that of trees with

certain complexities. Each node contains data and

each edge is considered a relationship between the

linked data.[6]

For example; On Facebook each element is

considered a node and each node is linked, when

we post a picture or upload a video onto the

platform each element is a node which is

connected to your profile using a link (edge).Thus

every time someone establishes a node a new

relationship is created.

We can write a graph data structure as an ordered

pair of (V,E) where V denotes the collection of all

vertices (where the nodes reside containing the

data) and E is a collection of edges.

Volume 4, Issue 11, September-2020 | www.ijsrcseit.com 5

Fig. 10. Representation of a Graph In the above

show graph:

V= {0, 1, 2, 3}

E= {(0, 1), (0, 2), (0, 3), (1, 2) G= {V, E}

Graph terminologies:

Adjacency: when there exists an edge that

connects two vertices, they’re called adjacent

vertices. In the above example 2 and 3 are not

adjacent.

Path: the designed set of steps that allows us to

traverse from one node A to B is a path.

Graph operations:

Function to check if the element is present

Traversing the given graph

Function to add a vertex and an edge

Function to display the path between two vertices

Graph Representation:

Adjacency matrix: representation as a 2D matrix

where the V*V vertices and in this matrix each

row and column is denoting a vertex.

If the value of a[i][j] is returning 1, it implies that

at the position i, j there is a data element present.

Likewise if it returns 0 then there is no data

element present.

Fig. 11. Adjacency matrix

Adjacency list: representation of the graph as a

combined array of linked lists.

The index value of the array will denote the

vertex, then each element in the linked list will

denote the other vertices that is forming an

edge/relationship with the vertex given by the

array index.

Fig. 12. Adjacency list

G. Application of Data Structures in Cyber

Security

Cryptography is associated with the process of

converting typical plain text into indiscernible

text and vice-versa. It is a method of accumulating

and transmitting data in a particular form so that

only those who are authorized and intended to

can read and process it. Oblivious data structures,

specifically Oblivious Trees, which store relevant

data and set of values at its leaves. [9] This

property is attained through the use of

randomization by the update algorithms.[8]

Oblivious tree data structures are in specific used

to decipher the privacy problem for incremental

digital signatures, as part of cryptography.[10] A

Volume 4, Issue 11, September-2020 | www.ijsrcseit.com 6

new skill for security has been developed which is

a permutation of Caesar Cipher and graph

traversal and Binary search tree collectively then

security will be much more superior to only using

Caesar cipher or graph traversal or binary search

tree. [7]

During the process of pen testing or web

application scan, one may need to understand the

code that’s written in order to decipher the

particulars.

In many standpoints the need to write appropriate

algorithms that gratify the needs within cyber

security like code encryption, creating certificates,

pen testing arises, and in such cases, having a

profound comprehension of data structures plays a

very important role.

II. COMPARISON TABLES

Table 1. Comparison of Structured Data

Table 2. Comparison of Unstructured Data

III. CONCLUSION

For a programmer one of the most basic and

important aspects to decide is; on what data

structure their program will be coded in, with the

change of data structure the methodology and

syntax of their program will change as well.

The key lies in choosing the right data structure

for their projects purpose as this will enhance the

efficiency of the computer program ease in

understanding syntax and stability of the whole

project.

A data structure plays a vital role in Big Data

Handling, Cyber Security and IOT.

The processing speed component, data search and

handling multiple requests from users in a

network all depend on the type of data structure

used and how it is used.

Specifically in a network of users the right data

structure can lead to enhanced cyber security and

ensure that the data stays within the network and

is stored accurately.

Volume 4, Issue 11, September-2020 | www.ijsrcseit.com 7

All in all through this paper we can conclude that

a data structure is a foundational requirement in

cyber security and is the support system for

various other aspects of today’s modern

technology.

IV. REFERENCES

[1]. Patel, Mayank. Data Structure and Algorithm

With C. Educreation Publishing, 2018.

[2]. Bachman, Charles W. "Data structure diagrams."

ACM SIGMIS Database: the DATABASE for

Advances in Information Systems 1, no. 2 (1969):

4-10.

[3]. Kruse, Robert, and C. L. Tondo. Data structures

and program design in

[4]. C. Pearson Education India, 2007.

[5]. Kruse, Robert, and C. L. Tondo. Data structures

and program design in

[6]. C. Pearson Education India, 2007.

[7]. Sleator, Daniel D., and Robert EndreTarjan. "A

data structure for dynamic trees." Journal of

computer and system sciences 26, no. 3 (1983):

362- 391.

[8]. Hoel, Erik G., and Hanan Samet. "A qualitative

comparison study of data structures for large line

segment databases." In Proceedings of the 1992

ACM SIGMOD international conference on

Management of data, pp. 205-214. 1992.

[9]. Forouzan, Behrouz A. Cryptography & network

security. McGraw-Hill, Inc., 2007.

[10]. Stinson, Douglas Robert, and Maura Paterson.

Cryptography: theory and practice. CRC press,

2018.

[11]. Wang, Xiao Shaun, Kartik Nayak, Chang Liu, TH

Hubert Chan, Elaine Shi, Emil Stefanov, and

Yan Huang. "Oblivious data structures." In

Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications

Security, pp. 215-226. 2014.

[12]. Micciancio, Daniele. "Oblivious data structures:

applications to cryptography." In Proceedings of

the twenty-ninth annual ACM symposium on

Theory of computing, pp. 456-464. 1997.

