
 CSEIT206114 | Accepted : 01 Feb 2020 | Published : 05 Feb 2020 | January-February-2020 [6 (1) : 74-81]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2020 IJSRCSEIT | Volume 6 | Issue 1 | ISSN : 2456-3307

DOI : 10.32628/CSEIT206114

74

Model Driven Methodology for JAVA

Karishma J. Karande1, Prakash S. Prasad2

1M.Tech Scholar, Department of Computer Science and Engineering, Priyadarshini College of Engineering,

Nagpur, Maharashtra, India

2Assistant Professor, Department of Information Technology, Priyadarshini College of Engineering, Nagpur,

Maharashtra, India

ABSTRACT

Real-time systems are getting expanding attention with the rising application situations that are wellbeing basic,

complex in usefulness, high on timing-related execution necessities, and cost-delicate, for example, self-

governing vehicles. Improvement of real-time systems is blunder inclined and exceptionally reliant on the

refined space mastery, making it an exorbitant procedure. There is a pattern of the current programming without

the real-time thought being re-created to realize real-time highlights, e.g., in the huge information innovation.

This paper uses the standards of model-driven building (MDE) and proposes the main procedure that naturally

changes over standard time-sharing Java applications to real-time Java applications. It opens up another

exploration bearing on advancement automation of real-time programming dialects and motivates many research

addresses that can be mutually examined by the inserted systems, programming dialects just as MDE communities.

Keywords : Real-Time Programming Languages, Real-Time Specification for Java, Model-Driven Engineering

I. INTRODUCTION

Real-time systems frequently encase stringent worldly

prerequisites, where a real-time application must

respond to boosts from the earth (counting the entry

of physical time) inside time interims directed by

nature [10]. Such systems have been all around

rehearsed in numerous fields, and their application

areas continue developing with rising situations [15].

In spite of the fact that planning prerequisites are

classified as nonfunctional necessities, they are

fundamental to wellbeing related systems. In [26], the

creator groups framework disappointment modes into

irregular disappointments and efficient

disappointments, where precise disappointments add

to framework risks which could prompt episodes with

cataclysmic results. Orderly disappointments can be

additionally arranged into utilitarian disappointments

and timing disappointments. Ensure that a wellbeing

related framework has the right planning prerequisites

and while its planning conduct fulfills these planning

necessities. In this way, showing real-time properties

structures key proof in guaranteeing the wellbeing of

a security-related framework. Because of the high

efficiency, conveyability and moderately low support

cost, the Java programming language has gotten broad

consideration in the real-time and security basic

spaces [21, 45]. For example, Java was embraced in [31]

and [30] to lessen circulated figuring inactivity in a

brought together could-based stage for independent

vehicles. Notwithstanding, these works have been

http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/
http://ijsrcseit.com/paper/CSEIT206114.pdf

Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com

Karishma J. Karande et al Int J Sci Res CSE & IT, January-February-2020 ; 6 (1) : 74-81

 75

created concentrating on usefulness with restricted

thought of timing and security ensure, particularly

when the perplexing discernment capacities are

included.

As commanded by wellbeing guidelines, for example,

the ISO 26262 for car systems and IEC 61508 for

practical security, hard real-time limitations are

fundamental to ensure the wellbeing of the framework

(e.g., the vehicle) and its encompassing condition.

Along these lines, there is a need to push these current

signs of progress in the direction of the real-time

system. There is a pattern that developed Java methods

(which were created without the idea of real-time) are

re-created to have real-time ensures (e.g., real-time

large information systems [18] and real-time stream

preparing procedures [32]). The significant

explanation is that those basic and moderate

techniques (like leaving enormous security edges) that

were sent by and by are losing ground, with the always

convoluted usefulness, higher planning related

execution necessities what's more, constrained assets

on the rising real-time applications [3, 12–14].

In spite of its ubiquity, standard Java can't be

legitimately applied to create real-time programming

because of the absence of offices, for example, string

booking, asset sharing control, memory the board, and

so on., which are basic to accomplish consistency [11]

as far as fleeting conduct. This has propelled the

improvement of the Real-Time Specification for Java

(RTSJ) [8]. RTSJ holds the characteristic points of

interest of Java and gives a lot of real-time offices to

ensure the framework transient conduct, and yet is

more earnestly to be utilized by programming

engineers.

Contrasted with the conventional time-sharing

applications in Java, growing real-time applications

utilizing RTSJ depends exceptionally on the ability in

the structure of the real-time system and requires

careful comprehension of the determination. It is

additionally mistaken inclined because of the intricacy.

These above make improvements in real-time

applications an expensive procedure. Despite the fact

that there have been framework investigation and

confirmation systems [35] to guarantee accuracy in the

planning stage, regarding both sensible and worldly

conduct, it stays an open and testing issue how to

dispense with human-related wrong factors (e.g.,

brought about by constrained comprehension of the

real-time ideas and lacking involvement in RTSJ

offices). The security basic nature in some real-time

systems areas enhances the effect of such concerns.

Model-driven building (MDE) is a contemporary

programming advancement worldview, which

advances models as first-class curios. In light of models,

engineers can play out a progression of model

administration tasks in a robotized way, and in the end

produce programming curios, for example,

documentation and working code. This decreases the

measure of time required to build up a framework and

accordingly improves the profitability of

programming engineers, by at any rate a factor of 10

much of the time [23, 25]. Embracing MDE likewise

decreases the number of mistakes all through the

advancement procedure and improves consistency

[51]. What's more, MDE can be applied to any space

to accomplish automation, because of the idea of area

explicit demonstrating and the interoperability gave

by model administration activities, which can be

executed in a computerized way.

In this paper, we apply the standards of MDE in the

area of real-time programming with Java. We propose

the primary procedure that can naturally change over

existing time-sharing Java applications to real-time

applications in RTSJ, through a progression of model

administration activities. The yield programming is in

full consistence to the RTSJ determination, with

conditions to the RTSJ runtime condition supporting

booking, memory the executives, asset sharing,

asynchrony, and so on. This empowers the designers

http://www.ijsrcseit.com/

Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com

Karishma J. Karande et al Int J Sci Res CSE & IT, January-February-2020 ; 6 (1) : 74-81

 76

with the constrained real-time foundation to perform

the fleeting examination on their non-real-time base

code and convert it to source code written in RTSJ.

Because of the use of MDE systems, profitability and

consistency all through the advancement. Human

blunders are disposed of in the automation. We depict

a robotized toolchain related to the proposed

philosophy. All the practical squares in the toolchain

and the included specialized methodologies are

clarified. The logical difficulties tended to and

concealed issues found towards the programmed age

of real-time applications with MDE systems are talked

about. We likewise bring up future research bearings

past this paper.

II. RELATED WORK

Demonstrating is a fundamental piece of any

framework designing procedure. Specialists of all

orders develop models of the systems they mean to

work to catch, test and approve their framework

structure thoughts with different partners before

focusing on a long and exorbitant generation process.

MDE is a product building technique that plans to

decrease the unplanned multifaceted nature of

programming systems by advancing models that

emphasis on the basic intricacy of systems, as the top

of the line relics of the product improvement process.

Rather than those conventional programming

advancement techniques, where models are mostly

utilized for correspondence and after death

documentation process, in MDE models are the

primary living and advancing ancient rarities from

which solid programming improvement curios can be

delivered in an analysable and computerized style.

MDE was proposed when object-situated systems

arrived at a point of fatigue [7, 37]. MDE comprises the

most recent change in perspective in programming

designing as it raises the degree of deliberation past

that gave by third era programming dialects. In

ongoing examinations, MDE has been appeared to

build efficiency by as much as a factor of 10 [23, 25],

and altogether improve significant parts of the product

advancement procedure, for example, viability,

consistency and recognizability [33].

There are two significant parts of MDE —

(i) Domain specific demonstrating, where area

specialists make their very own space explicit

displaying dialects (DSMLs) to catch the ideas in their

space (and make examples of their DSMLs to show

their systems);

(ii) Model administration activities, which are

programs performed on models in a robotized way to

produce programming building antiquities. Model

administration activities commonly incorporate, yet

are not constrained to:

✓ Text-to-Model Transformation (T2M): to change

over content, (for example, source code) into

models dependent on parsing rules characterized

in the change;

✓ Model Validation: to check the well-formedness of

models, just as custom limitations against the

components in models;

✓ Model-to-Model Transformation (M2M): to

interoperate between various demonstrating

advances, where one kind of model is changed into

another sort;

✓ Model-to-Text Transformation (M2T): to produce

content dependent on the substance of the model

(e.g., documentation age and source code age);

✓ Model Comparison: to contrast various

adaptations of a model with discover what is

changed;

✓ Model Merging: to coordinate models

characterized by various gatherings yet share

model components.

http://www.ijsrcseit.com/

Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com

Karishma J. Karande et al Int J Sci Res CSE & IT, January-February-2020 ; 6 (1) : 74-81

 77

MDE has been applied to an assortment of spaces, with

demonstrated advantages. In [28] MDE is applied to

change model question dialects to MySQL inquiries to

diminish the exertion and blunder rates in physically

making MySQL inquiries. In [51], MDE is applied to

consequently produce completely useful graphical

editors for UML profiles. In [5], MDE is applied to

change characteristic dialects to database question

dialects to frame complex inquiry utilizing basic

normal language syntaxes.

Growing real-time systems through a model-based

methodology aren't novel in the network [24, 46]. The

thought proposed in this paper is incompletely

enlivened by them. None of these works study the

relocation from standard Java to real-time Java.

Furthermore, a large number of past endeavors depend

on the idea of model-driven

engineering, which is an obsolete MDE practice and

has an absence of hardware support. By applying MDE

methods, as recently portrayed, Real-Time framework

designers can profit by the efficiency gain from MDE,

just as the consistency and practicality through

automation gave by MDE.

RTSJ, initially created as Java Special Request 1 under

the Java Community Process in 2001 1, has been well-

practiced in a wide scope of utilization spaces,

including car, producing control, flying and data

systems [22, 43, 46, 47]. For example, RTSJ has been

applied to the auto-pilot arrangement of an unmanned

flying vehicle, which is the main Java-based

framework that fulfills all Boeing's operational

necessities and flew in tests [1]. Jcoap, realized by RTSJ,

gives real-time interchanges to IoT systems [29]. In

[17], RTSJ has been applied in a piece of realtime

enormous information preparing systems with FPGA-

based equipment quickening. In industry,

JamaicaCAR created by both Acis and Perrone

Robotics2 gives a lightweight application structure to

vehicle head units and in-vehicle data systems.

Likewise, Acis and CLAAS3 present arrangements (in

particular Jamaica-IoT) for computerized plant and

assembling, which empowers sending and activity of

information investigation and control rationale at the

system's edge.

The RTSJ is intended to help both hard and delicate

real-time applications. This particular comprises of

two significant segments —

i. expansions from the Java programming

language; and

ii. adjustments on the semantics of the standard

Java Virtual Machines (JVM) [8].

This area quickly surveys the programming

determination of RTSJ, together with its reference

usage just as the supporting Virtual Machines (VM).

Point by point portrayals of each RTSJ office and the

application models can be found in [10].

Altogether, there are seven augmentations from the

standard Java language that are given in the bundle

javax.realtime, including task planning and

dispatching, memory the executives, shared asset

control, offbeat occasion taking care of, and so on.

One significant office gave in RTSJ

isjavax.RealtimeThread, which takes a lot of planning-

related parameters (e.g., need, period and cutoff time)

determining a real-time string's discharge, execution

and timing properties. Three kinds of strings are

gotten from this element: intermittent, sporadic and

aperiodic, contingent upon the information discharge

parameter. Moreover, a lot of non-concurrent

occasion handlers are given to permit client

characterized activities in the instances of cutoff time

miss or move overwhelm. As a matter of course, a

preemptive fixed-need scheduler books the real-time

strings, however, client characterized planning and

dispatching strategies are likewise conceivable.

http://www.ijsrcseit.com/

Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com

Karishma J. Karande et al Int J Sci Res CSE & IT, January-February-2020 ; 6 (1) : 74-81

 78

Another significant expansion of the real-time

memory of the executives model. In RTSJ, a lot of

memory the executive's offices are given in RTSJ (e.g.,

Immortal Memory and ScopedMemory) to permit the

development of self-characterized memory models.

Notwithstanding, RTSJ forces a lot of memory getting

to decides that confine memory-getting to practices to

anticipate dangling reference (i.e., references that

point to objects in recovered memory squares). With

memory the executives model characterized, the

standard Java city worker is never again required so its

erratic impedance is abstained from during run-time.

Afterward, a real-time trash specialist is bolstered by

JamaicaVM, which permits the utilization of Heap

memory and facilitates the improvement of RTSJ

applications by abstaining from building complex

memory models.

Figure 1. Time-sharing applications to real-time

applications migration

Within the sight of shared articles, RTSJ gives a few

asset sharing arrangements like need Inheritance [40]

and Priority Ceiling Protocol (PCP) [36]. Among these

conventions, the PCP yields the limited blocking time

(i.e., one basic area in particular) and assurance stop

free asset gets to. Likewise, asynchrony is all around

taken care of by means of a lot of offbeat occasion

taking care of offices. At long last, a lot of time-related

offices (e.g., real-time framework clock and High

Resolution Time with the granularity of nanoseconds)

are bolstered.

III. CONCLUSION

This paper proposes a model-driven procedure that

consequently changes time-sharing Java applications

to realtime applications in RTSJ. This approach

facilitates the improvement of real-time systems by

permitting programming architects to build real-time

Java applications without essential information on the

RTSJ programming particular. What's more, the

proposed technique is good to those associations with

a need to re-build up their items to have real-time

highlights. The proposed philosophy gives a real-time

framework improvement arrangement that

diminishes programming advancement cost, builds

profitability and wipes out human-related blunders. In

this paper, a total standard Java to RTSJ change

automation engineering is given required activities

during every change stage portrayed in detail. What's

more, change rules are exhibited for producing major

RTSJ offices and the RTSJ run-time condition

dependent on the JamaicaVM with the given data

sources.

IV. REFERENCES

[1]. Austin Armbruster, Jason Baker, Antonio Cunei,

Chapman Flack, David Holmes, Filip Pizlo,

Edward Pla, Marek Prochazka, and Jan Vitek.

2007. A real-time Java virtual machine with

applications in avionics. ACM Transactions on

Embedded Computing Systems (TECS) 7, 1

(2007), 5.

[2]. Neil Audsley, Alan Burns, Mike Richardson,

Ken Tindell, and Andy J Wellings. 1993.

Applying new scheduling theory to static

priority pre-emptive scheduling. Software

Engineering Journal 8, 5 (1993), 284-292.

[3]. Neil C Audsley, Yu Chan, Ian Gray, and Andy J

Wellings. 2014. Real- Time Big Data: the

JUNIPER Approach. (2014).

[4]. Jason Baker, Antonio Cunei, Chapman Flack,

Filip Pizlo, Marek Prochazka, Jan Vitek, Austin

Armbruster, Edward Pla, and David Holmes.

http://www.ijsrcseit.com/

Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com

Karishma J. Karande et al Int J Sci Res CSE & IT, January-February-2020 ; 6 (1) : 74-81

 79

2006. A real-time java virtual machine for

avionics-an experience report. In 12th IEEE

Real-Time and Embedded Technology and

Applications Symposium (RTAS’06). IEEE, 384-

396.

[5]. Konstantinos Barmpis, Dimitrios Kolovos, and

Justin Hingorani. 2018. Towards a framework

for writing executable natural language rules. In

European Conference on Modelling

Foundations and Applications. Springer, 251-

263.

[6]. John Barnes. 1997. High integrity Ada: the

SPARK approach. Vol. 189. Addison-Wesley

Reading.

[7]. Jean Bézivin. 2005. On the unification power of

models. Software & Systems Modeling 4, 2

(2005), 171-188.

[8]. Gregory Bollella and James Gosling. 2000. The

real-time specification for Java. Computer 33, 6

(2000), 47-54.

[9]. Hugo Bruneliere, Jordi Cabot, Grégoire Dupé,

and Frédéric Madiot. 2014. Modisco: A model

driven reverse engineering framework.

Information and Software Technology 56, 8

(2014), 1012-1032.

[10]. Alan Burns and Andy Wellings. 2016.

Analysable Real-Time Systems: Programmed in

Ada. CreateSpace Independent Publishing

Platform.

[11]. Alan Burns and Andrew J Wellings. 2001. Real-

time systems and programming languages: Ada

95, real-time Java, and real-time POSIX. Pearson

Education.

[12]. Wanli Chang and Samarjit Chakraborty. 2016.

Resource-aware automotive control systems

design: A cyber-physical systems approach.

Foundations and Trends in Electronic Design

Automation 10, 4 (2016), 249-369.

[13]. Wanli Chang, Dip Goswami, Samarjit

Chakraborty, and Arne Hamann. 2018. OS-

aware automotive controller design using non-

uniform sampling. ACM Transactions on Cyber-

Physical Systems 2, 4 (2018), 26.

[14]. Wanli Chang, Dip Goswami, Samarjit

Chakraborty, Lei Ju, Chun Xue, and Sidharta

Andalam. 2017. Memory-aware embedded

control systems design. IEEE Transactions on

Computer-Aided Design of Integrated Circuits

and Systems 36, 4 (2017), 586-599.

[15]. Wanli Chang, Alma Pröbstl, Dip Goswami,

Majid Zamani, and Samarjit Chakraborty. 2015.

Reliable CPS design for mitigating

semiconductor and battery aging in electric

vehicles. In IEEE International Conference on

Cyber-Physical Systems, Networks, and

Applications. 37-42.

[16]. Robert I. Davis and Alan Burns. 2011. A survey

of hard real-time scheduling for multiprocessor

systems. Acm Computing Surveys 43, 4 (2011),

1-44.

[17]. Ian Gray, Neil Cameron Audsley, Jamie Garside,

Yu Chan, and Andrew John Wellings. 2015.

FPGA-based acceleration for Real-Time Big

Data Systems. In 9th HiPEAC workshop on

Reconfigurable Computing.

[18]. Ian Gray, Yu Chan, Jamie Garside, Neil C.

Audsley, and Andy J. Wellings. 2015. FPGA-

based hardware acceleration for Real-Time Big

Data systems.

[19]. Les Hatton. 2004. Safer language subsets: an

overview and a case history, MISRA C.

Information and Software Technology 46, 7

(2004), 465-472.

[20]. Florian Heidenreich, Jendrik Johannes, Mirko

Seifert, and Christian Wende. 2009. Closing the

gap between modelling and java. In

International Conference on Software Language

Engineering. Springer, 374-383.

[21]. Thomas Henties, James J Hunt, Doug Locke,

Kelvin Nilsen, Martin Schoeberl, and Jan Vitek.

2009. Java for safety-critical applications. In 2nd

international workshop on the certification of

http://www.ijsrcseit.com/

Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com

Karishma J. Karande et al Int J Sci Res CSE & IT, January-February-2020 ; 6 (1) : 74-81

 80

safety-critical software controlled systems

(SafeCert 2009).

[22]. Erik Yu-Shing Hu, Eric Jenn, Nicolas Valot, and

Alejandro Alonso. 2006. Safety critical

applications and hard real-time profile for Java:

a case study in avionics. In Proceedings of the

4th international workshop on Java technologies

for real-time and embedded systems. ACM, 125-

134.

[23]. Ari Jaaksi. 2002. Developing mobile browsers in

a product line. IEEE software 19, 4 (2002), 73-

80.

[24]. A Juan, Jorge Garrido, Juan Zamorano, and

Alejandro Alonso. 2014. Model-driven design of

real-time software for an experimental satellite.

[25]. IFAC Proceedings Volumes 47, 3 (2014), 1592-

1598.

[26]. Juha Karna, Juha-Pekka Tolvanen, and Steven

Kelly. 2009. Evaluating the use of domain-

specific modeling in practice. In Proceedings of

the 9th OOPSLA workshop on Domain-Specific

Modeling.

[27]. Timothy Patrick Kelly. 1999. Arguing safety: a

systematic approach to managing safety cases.

Ph.D. Dissertation. University of York York,

UK.

[28]. Dimitrios S Kolovos, Richard F Paige, and Fiona

AC Polack. 2008. The epsilon transformation

language. In International Conference on

Theory and Practice of Model Transformations.

Springer, 46 60.

[29]. Dimitrios S Kolovos, Ran Wei, and Konstantinos

Barmpis. 2013. An approach for efficient

querying of large relational datasets with

oclbased languages. In XM 2013-Extreme

Modeling Workshop. 48.

[30]. Björsn Konieczek, Michael Rethfeldt, Frank

Golatowski, and Dirk Timmermann. 2015. Real-

time communication for the internet of things

using jcoap. In 2015 IEEE 18th International

Symposium on Real-Time Distributed

Computing. IEEE, 134-141.

[31]. Shaoshan Liu, Jie Tang, ChaoWang, QuanWang,

and Jean-Luc Gaudiot. 2017. Implementing a

Cloud Platform for Autonomous Driving. arXiv

preprint arXiv:1704.02696 (2017).

[32]. Shaoshan Liu, Jie Tang, ChaoWang, QuanWang,

and Jean-Luc Gaudiot. 2017. A unified cloud

platform for autonomous driving. Computer 50,

12 (2017), 42-49.

[33]. HaiTao Mei, Ian Gray, and Andy Wellings. 2016.

Real-Time stream processing in java. In Ada-

Europe International Conference on Reliable

Software Technologies. Springer, 44-57.

[34]. Parastoo Mohagheghi and Vegard Dehlen. 2008.

Where is the proof?-A review of experiences

from applying MDE in industry. In European

Conference on Model Driven Architecture-

Foundations and Applications. Springer, 432-

443.

[35]. Renaud Pawlak, Martin Monperrus, Nicolas

Petitprez, Carlos Noguera, and Lionel Seinturier.

2015. Spoon: A Library for Implementing

Analyses and Transformations of Java Source

Code. Software: Practice and Experience 46

(2015), 1155-1179.

https://doi.org/10.1002/spe.2346

[36]. Ben Potter, David Till, and Jane Sinclair. 1996.

An introduction to formal specification and Z.

Prentice Hall PTR.

[37]. Ragunathan Rajkumr. 2012. Synchronization in

real-time systems: a priority inheritance

approach. Vol. 151. Springer Science & Business

Media.

[38]. Douglas C Schmidt. 2006. Model-driven

engineering. COMPUTER-IEEE COMPUTER

SOCIETY- 39, 2 (2006), 25.

[39]. Martin Schoeberl, Andreas Engelbredt

Dalsgaard, René Rydhof Hansen, Stephan E

Korsholm, Anders P Ravn, Juan Ricardo Rios

Rivas, Tórur Biskopstø Strøm, Hans

Søndergaard, Andy Wellings, and Shuai Zhao.

2017. Safety-critical Java for embedded systems.

http://www.ijsrcseit.com/

Volume 6, Issue 1, January-February-2020 | http://ijsrcseit.com

Karishma J. Karande et al Int J Sci Res CSE & IT, January-February-2020 ; 6 (1) : 74-81

 81

Concurrency and Computation: Practice and

Experience 29, 22 (2017), e3963.

[40]. Martin Schoeberl, Hans Sondergaard, Bent

Thomsen, and Anders P Ravn. 2007. A profile

for safety critical java. In 10th IEEE

International Chang, Shuai Zhao, Ran Wei,

Andy Wellings, and Alan Burns Symposium on

Object and Component-Oriented Real-Time

Distributed Computing (ISORC’07). IEEE, 94-

101.

[41]. Lui Sha, Ragunathan Rajkumar, and John P.

Lehoczky. 1990. Priority Inheritance Protocols:

An Approach to Real-Time Synchronization. 39,

9 (1990).

[42]. Fridtjof Siebert. 2007. Realtime garbage

collection in the JamaicaVM 3.0. In Proceedings

of the 5th international workshop on Java

technologies for real-time and embedded

systems. Citeseer, 94-103.

[43]. Fridtjof Siebert. 2010. Concurrent, parallel, real-

time garbagecollection. In ACM Sigplan Notices,

Vol. 45. ACM, 11-20.

[44]. Rashmi P Sonar and Rani S Lande. 2018.

Javolution-Solution for Real Time Embedded

System. In 2018 International Conference on

Research in Intelligent and Computing in

Engineering (RICE). IEEE, 1-10.

[45]. Chris Tapp. 2008. An introduction to MISRA

C++. SAE international journal of passenger

cars-electronic and electrical systems 1, 2008-

01- 0664 (2008), 265-268.

[46]. Kleanthis Thramboulidis. 2007. IEC 61499 in

factory automation. In Advances in Computer,

Information, and Systems Sciences, and

Engineering. Springer, 115-124.

[47]. Kleanthis Thramboulidis and Alkiviadis Zoupas.

2005. Real-time Java in control and automation:

a model driven development approach. In 2005

IEEE Conference on Emerging Technologies and

Factory Automation, Vol. 1. IEEE, 8-pp.

[48]. Christian Wawersich, Michael Stilkerich, and

Wolfgang Schröder- Preikschat. 2007. An

OSEK/VDX-based multi-JVM for automotive

appliances. In Embedded System Design: Topics,

Techniques and Trends. Springer, 85-96.

[49]. Andrew J Wellings. 2004. Concurrent and real-

time programming in Java. John Wiley New

York.

[50]. Shuai Zhao. 2018. A FIFO Spin-based Resource

Control Framework for Symmetric

Multiprocessing. Ph.D. Dissertation. University

of York.

[51]. Shuai Zhao, Andy Wellings, and Stephan Erbs

Korsholm. 2015. Supporting multiprocessors in

the ICECAP safety-critical java run-time

environment. In Proceedings of the 13th

InternationalWorkshop on Java Technologies

for Real-time and Embedded Systems. ACM, 1.

[52]. Athanasios Zolotas, Ran Wei, Simos Gerasimou,

Horacio Hoyos Rodriguez, Dimitrios S. Kolovos,

and Richard F. Paige. 2018. Towards Automatic

Generation of UML Profile Graphical Editors for

Papyrus. In Modelling Foundations and

Applications, Alfonso Pierantonio and Salvador

Trujillo (Eds.). Springer International

Publishing

Cite this article as :

Karishma J. Karande, Prakash S. Prasad, "Model

Driven Methodology for JAVA", International Journal

of Scientific Research in Computer Science,

Engineering and Information Technology

(IJSRCSEIT), ISSN : 2456-3307, Volume 6 Issue 1, pp. ,

January-February 2020.

Journal URL : http://ijsrcseit.com/CSEIT206114

http://www.ijsrcseit.com/
http://ijsrcseit.com/CSEIT206114

